Allelic variant at $-79\ (C>T)$ in $CDKN1B$ ($p27^{kip1}$) confers an increased risk of thyroid cancer and alters mRNA levels

Iñigo Landa1*, Cristina Montero-Conde1*, Donatella Malanga2,3, Silvia De Gisi3, Guillermo Pita4, Luis-Javier Leandro-García1, Lucía Inglada-Pérez1, Rocío Letón1, Carmela De Marco2,3, Cristina Rodríguez-Antona1,5, Giuseppe Viglietto2,3 and Mercedes Robledo1,5

1Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Centre, Centro Nacional de Investigaciones Oncológicas (CNIO), Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
2University Magna Graecia, Catanzaro, Italy
3Institute for Genetic Research IRGS, Ariano Irpino (AV), Italy
4Genotyping Unit, Spanish National Cancer Centre (CNIO), Madrid, Spain
5ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain

(Correspondence should be addressed to M Robledo at Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Centre, Centro Nacional de Investigaciones Oncológicas (CNIO); Email: mrobledo@cnio.es)

*(I Landa and C Montero-Conde contributed equally to this work)

Abstract

The aim of this study is to assess if common genetic variants located in the $CDKN1B$ locus, coding for the cell cycle inhibitor $p27^{kip1}$, are involved in thyroid cancer susceptibility. Based on the literature and functional predictions, we selected three polymorphisms within the $CDKN1B$ gene (rs2066827 (T326G, V109G), rs34330 ($-79\ C>T$) and rs36228499 ($-838\ C>A$)) to perform the first case–control study in thyroid cancer involving this locus. We had 649 Spanish patients with sporadic thyroid cancer and 385 healthy representative controls available. Luciferase reporter gene assays, real-time quantitative reverse transcription-PCR and immunoblot experiments were carried out to demonstrate the putative effect of the associated variant. The polymorphism rs34330 ($-79\ C>T$) was identified as a risk factor for developing the follicular variant of papillary thyroid carcinoma (FVPTC), fitting a recessive model (odds ratio $=2.12\ (95\%\ confidence\ interval\ =1.09–4.15;\ P\ value=0.023$). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic $p27^{kip1}$ promoter ($P\ value <0.001$). This effect was observed in $-79TT$ genotype control carriers, who showed a tendency towards lower $CDKN1B$ mRNA levels in lymphocytes, as well as at the protein level. This is the first study that identifies $CDKN1B$ as a low-penetrance gene in thyroid cancer, and specifically in FVPTC subtype. We propose a reduced $CDKN1B$ gene transcription depending on the genotype of the $-79\ C>T$ (rs34330) variant as a novel mechanism underlying $p27^{kip1}$ downregulation.

Endocrine-Related Cancer (2010) 17 317–328

Introduction

Cancers that arise in the thyroid gland account for 1% of all neoplasias. More than 95% of thyroid carcinomas are derived from follicular cells or thyrocytes, the thyroid hormone-producing cell lineage in the gland (DeLellis 2004). Among the neoplasias arising from thyroid follicular cells, ‘papillary thyroid carcinoma’ (PTC) and ‘follicular thyroid carcinoma’ (FTC) represent the two most common subtypes (85 and 10% respectively; Kondo et al. 2006). A minority of the thyroid tumours (3%), referred to as ‘medullary thyroid carcinoma’ (MTC), arise from a different cell lineage, the parafollicular or C-cells, which are involved in calcitonin secretion (Randolph & Maniar 2000).
Different genetic alterations, all of them involving the RET/MAP kinase pathway, have been described as subtype-specific somatic causal changes in PTC and FTC (Santoro et al. 1990, Greco et al. 1992, Davies et al. 2002, Nikiforov 2002, Kondo et al. 2006). Although some genes related to thyroid cancer development as part of familial syndromes are known (Mulligan et al. 1993, Hofstra et al. 1994), there are few data on genetic risk factors related to the susceptibility for developing sporadic thyroid carcinomas (Cebrian et al. 2005, Ruiz-Llorente et al. 2007). The identification of low-penetrance genes (LPGs) related to follicular cell-derived carcinoma is an arduous task due to the heterogeneity and relative rarity of the disease. A well-known approach, which compensates this problem and increases the probability of finding genetic risk factors related to the disease, is the selection of single nucleotide polymorphisms (SNPs) within candidate genes or loci for the development of thyroid cancer.

The CDKN1B gene encodes p27Kip1, an inhibitor of the cyclin/cyclin-dependent kinase (Cdk) complexes (Sa et al. 2005), which are essential for cell cycle progression. Loss of expression of p27Kip1 protein has been described as a frequent event in several human cancers (Slingerland & Pagano 2000, Chu et al. 2008), apparently conferring a proliferative advantage that can lead to tumour formation. This behaviour first suggested a tumour suppressor role of p27Kip1, but it does not fit all classic features, since it is rarely mutated in cancer (Kawamata et al. 1995, Kossatz & Malek 2007, Lindberg et al. 2007). Alternative mechanisms acting at the post-transcriptional level have been suggested, including a lower translation rate of CDKN1B mRNA (Hengst & Reed 1996); an increase in protein degradation, specifically by the Scf-Skp2 E3 ubiquitin-protein ligase (Pagano et al. 1995, Chiappetta et al. 2007); and the cytosolic mislocalization of p27Kip1 protein (Viglietto et al. 2002, Min et al. 2004).

CDKN1B plays a key role in the aetiology of thyroid cancer. Several lines of evidence from clinical and in vitro studies demonstrate that somatic loss, under-expression (Khoo et al. 2002) or mislocalization (Baldassarre et al. 1999) of p27Kip1 may contribute to the process of thyroid carcinogenesis. In addition, it has been demonstrated that the phosphatidylinositol-3-kinase (PI3K)/AKT pathway controls thyroid cell proliferation by regulating the expression and subcellular localization of p27 (Baldassarre et al. 1999, Khoo et al. 2002, Motti et al. 2005), and therefore, CDKN1B (p27Kip1) represents a good candidate gene for a classical case–control study. In view of these antecedents, the aim of the present study was to assess whether common, potentially functional, genetic variants within the CDKN1B gene could influence the risk for thyroid cancer. Thus, based on a scan of the literature and the use of bioinformatics tools, three potentially functional SNPs in the CDKN1B gene were selected: −838C>A (rs36228499), −79C>T (rs34330) and 326T>G (V109G, rs2066827).

Here, we propose that the −79C>T (rs34330) polymorphism acts as a genetic risk factor for thyroid cancer by affecting the transcription rate, as indicated by the functional assays performed in this study.

Subjects and methods

Patients

A total of 649 Spanish patients with sporadic thyroid cancer were recruited for a multicentre hospital-based study. The main thyroid cancer subtypes were represented in this series: 274 MTC, 328 PTC, composed of 193 ‘classic PTC’ (cPTC) and 129 ‘follicular variant PTC’ (FVPTC), and 47 FTC. Diagnoses were assessed by pathologists from the different institutions that participated in the study.

Controls

We selected a series of 385 healthy, representative Spanish controls, all of them cancer free and without any thyroid pathology, according to their responses to a general clinical questionnaire.

Mean age and gender distribution were similar in controls and cases (Mann–Whitney’s U and Kruskal–Wallis associated P values >0.05).

Informed consent was obtained from all subjects included in the study.

DNA and RNA isolation

Genomic DNA was extracted from the blood of 591 patients following a standard method (Sambrook et al. 1989). The remaining 58 DNA samples were obtained from patients’ saliva using the Oragene DNA Self-Collection Kit (DNA Genotek, Ottawa, Ontario, Canada). Control DNAs were isolated from peripheral blood lymphocytes using automatic DNA extraction according to the manufacturer’s instructions (Magnapure, Roche).

Total RNA was isolated from lymphocytes of 97 controls following the standard TRIzol Reagent method (Invitrogen).

SNP selection

Fifteen CDKN1B polymorphisms are described in the International HapMap Project database (http://www.hapmap.org/, release 21a/phaseII), considering the
region that spans from 5 kb upstream to 1 kb downstream of the gene. We applied two filters in the SNP selection: the allele frequency (at least a minor allele frequency (MAF) of 0.05 in the HapMap-CEU population) and a predicted functionality. Seven of the fifteen variants passed the first filter, and only three of these (−838C>A (rs36228499), −79C>T (rs34330) and 326T>G (V109G, rs2066827)) showed consistent functional predictions (at least two different algorithms predicted the same result) according to the PupaSuite (Conde et al. 2006) and F-SNP (Lee & Shatkay 2008) bioinformatics tools. Nucleotide positions are numbered relative to the start of translation according to the Genbank accession number AB003688. Predicted functionality was reinforced by previously published data as described below. The −838C>A lies within the promoter region of p27Kip1, and it has been associated with an increased risk of myocardial infarction (Gonzalez et al. 2004). The −79C>T is a polymorphism within the 5′ untranslated region (5′ UTR) of p27Kip1, which has been shown to contain promoter activity (Minami et al. 1997, Ito et al. 1999, Liu et al. 2005), and has been previously associated with cancer (Chang et al. 2004, Wang et al. 2007a, Driver et al. 2008). Finally, 326T>G (V109G) is a non-synonymous variant in exon 1, which has been also associated with susceptibility to cancer (Kibel et al. 2003, Li et al. 2004, Gayther et al. 2007).

According to the HapMap, there is some linkage disequilibrium along the CDKN1B region between rs36228499 and rs34330, but they do not show a high correlation. Thus, the three mentioned SNPs were assessed as independent putative genetic risk factors.

Genotyping platforms

Two different genotyping strategies were used to evaluate the three polymorphisms: a TaqMan genotyping assay (Applied Biosystems, CA, USA) for SNPs rs34330 and rs2066827, and a restriction fragment length polymorphism (RFLP) approach for rs36228499.

Taqman platform

Probe accuracy to discriminate the two alleles at a specific locus was initially checked in a set of 24 DNA samples. Genotyping specificity was assessed by including two DNA duplicates and a negative control in each 96-well plate genotyped, yielding 100% consistent replication results. In addition, we genotyped cases and controls in the same run. The reaction was performed at the default conditions recommended by the manufacturer: an initial denaturing step of 10 min at 95 °C, followed by 40 cycles of 15 s of denaturation at 92 °C, and 1 min of annealing and extension at 60 °C. Samples without a genotype call under these conditions were excluded for further analyses.

RFLP technique

rs36228499 was genotyped as described by Gonzalez et al. (2004). To improve the amplification intensity and, thus, the assay resolution, we designed a nested PCR, using the following primer sequences and PCR conditions: first PCR: −838_F: 5′ GACCTTCGCG- GTCCCTCG-3′; −838_R: 5′ GTGACTGCGGAGG- GGCTGACT-3′; temperature of annealing, Ta = 58 °C, 40 cycles; second PCR: −838N_F: 5′ TCCAGTCC- CGGCTTCCGGG-3′; −838N_R: 5′ CCTGCTCC- GGCTGGGCTCAGG-3′; Ta = 65 °C, 35 cycles. The −838N_F primer included a mismatch (shown in lower case) to create a TaqI restriction endonuclease site when −838C was present. Amplicons were subsequently digested by TaqI (Fermentas, Burlington, Ontario, Canada), and the products were separated in a 3.5% agarose D1 medium (Pronadisa, Torrejón de Ardoz Spain) gel electrophoresis run (data not shown). Enzymatic digestion yielded fragments of 173 bp (undigested, corresponding to the polymorphic AA genotype), 152+21 bp (digested, wild-type CC genotype) or both (CA heterozygotes).

DNA sequencing

Accuracy of both TaqMan and RFLP genotyping was confirmed by direct sequencing of randomly selected samples that represented 5% of the total samples. Regions containing the studied SNPs were amplified by PCR prior to sequencing using the following additional primers and conditions: −79C>T SNP lies within the promoter/5′ region of the CDKN1B gene. Therefore, we cloned the minimal regulatory region of the CDKN1B gene that has been shown to be able to efficiently drive transcription of a downstream reporter gene (Minami et al. 1997, Ito et al. 1999, Liu et al. 2005). DNA fragments from the 5′ region of the CDKN1B gene
between nucleotides −575 and −1 (AB003688), containing either C or T at position −79, were generated through PCR using genomic DNA of homozygous CC and TT individuals with forward (GGTACCGGTACCCACCTTAAGGCCCGCT-CG) and reverse (AAGCTTAAAGCTTCTTCTCCCGGGTCTGCACG) primers containing KpnI and HindIII sites respectively. PCR products were cloned into the pGL3-Basic promoterless plasmid (Promega) to generate pGL3-p27Kip1C (−79C) and pGL3-p27Kip1T (−79T) in order to drive the expression of the downstream luciferase gene. Plasmids generated for each genotype were confirmed by direct sequencing.

Luciferase reporter gene assays

For luciferase activity assays, cells were transfected with 1 μg of the promoter/luciferase reporter gene (pGL3-p27Kip1C or pGL3-p27Kip1T), with 100 ng of pRL Renilla as the control vector (Promega) to correct for differences in transfection efficiency. Cells were collected 24 and 48 h after transfection by centrifugation, washed twice with PBS and lysed with 100 μl of cell lysis reagent (Dual-Luciferase Reporter Assay System, Promega). Cell lysates were dispensed into luminometer plates, followed by sequential auto-injection of the Luciferase Assay Reagent for firefly luciferase activity measurement, and Stop & Glo Reagent for Renilla luciferase activity measurement (Dual-Luciferase Reporter Assay System, Promega). Basal luciferase activity was checked in cells transfected with an empty vector (pGL3 Basic Vector). Three independent transfections were performed for each construct (pGL3 Basic Vector, pGL3-p27Kip1C or pGL3-p27Kip1T) in triplicate.

cDNA synthesis and real-time quantitative reverse transcription-PCR

We obtained cDNA from RNA that was isolated from lymphocytes of 97 healthy volunteers. We used it to evaluate the genotype–phenotype correlation by means of real-time quantitative PCR (qPCR) to compare the CDKN1B mRNA levels as a function of rs34330 polymorphism genotype. One microgram of total RNA was reverse transcribed using Superscript II Reverse Transcriptase (Invitrogen) and an oligo dT18 primer following the manufacturer’s instructions. The amount of CDKN1B mRNA was quantified by real-time PCR with the Sequence Detection System 7900HT (Applied Biosystems) using the specific primers (p27QF: 5′-CCCTAGGGCCAAAGTGAGT-3′ and p27QR: 5′-AGTAGAAGACTCGGGAAAGCTG-3′), a labelled probe (Universal ProbeLibrary #39, Roche), and the Universal Master Mix (PE Applied Biosystems). The amplification conditions consisted of an initial step at 95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C. Standard curves were generated with serial 1:4 dilutions of a sample showing high CDKN1B expression of mRNA. Normalization was carried out with the internal standard β-glucuronidase (GUS) using as a forward primer 5′-GAAAATATGTGGTTGGAAGATCCCCTTTTA-3′ and as a reverse primer 5′-CGGATGAAGATCCCCCTTTTA-3′; as a reverse primer 5′-FAM-CCAGCACCCTCTCGTGATCTGTTCA-3′; and as a probe 5′-FAM-CCAGCACCCTCTCGTGATCTGTTCA-3′. All reactions were in the initial part of the exponential amplification phase, and the cycle at which each sample crossed the threshold (Ct) was recorded for CDKN1B and GUS. The ΔΔCt method was used for the calculation of the different amounts of mRNA (Livak & Schmittgen 2001). Negative controls were included in all PCRs, and assays were carried out in triplicate.

Protein isolation and immunoblot

Nine healthy volunteers carrying rs34330 genotypes equally (CC, CT and TT, three each) were randomly selected to check whether this promoter variant could have an effect at the p27Kip1 protein level. Whole protein extraction from blood lymphocytes was performed using RIPA (Invitrogen) buffer according to the manufacturer’s recommendations. Proteins were separated by 12% SDS-PAGE using the XCell SureLock Mini-Cell electrophoresis system (Invitrogen), and were transferred to polyvinylidene fluoride membranes (Immobilon-P Membrane, Millipore, Billerica, MA, USA). Equal loading of proteins was verified by Ponceau S staining.
The membranes were blocked, and were then incubated with a 1:500 dilution of the sc-776 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) following the manufacturer’s instructions. This is a commercial polyclonal antibody raised against amino acids 1–197 representing full-length p27Kip1. After washing, the membranes were incubated with a 1:10 000 dilution of Alexa Fluor 680 anti-rabbit IgG (Molecular Probes, Eugene, OR, USA) secondary antibody, and the corresponding fluorescence signal was visualized using a LI-COR Odyssey Blot scanner. Equal protein loading was assessed by using a 1:1000 dilution of anti-α-tubulin (DM1A; Abcam, Cambridge, UK).

Protein quantification was done using Odyssey 2.1 software. Both p27Kip1 and α-tubulin (αTUB) band intensities were corrected by subtracting the intensities of their respective backgrounds. Final p27Kip1 expression was represented as relative units, resulting from p27Kip1/αTUB protein intensity ratios.

Statistical analysis

Departure from Hardy–Weinberg equilibrium (HWE) for all SNPs was tested in the controls using Fisher’s exact test (command available online at http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). Associations between each SNP and thyroid cancer risk were assessed using Pearson’s χ² test. Genotype frequencies in cases and controls were compared, and odds ratios (ORs) were estimated directly from contingency tables. The previous association remained statistically significant after correcting for gender and age. We first proved that OR remained homogeneous (P value > 0.05) by Tarone’s test. Then, we demonstrated that neither gender nor age was acting as a confounding factor in our results by both Mantel–Haenszel test and stepwise conditional logistic regression, which yielded an adjusted OR = 2.01 and P value = 0.041.

Results

Polymorphism rs34330 (−79C>T) is significantly associated with the FVPTC

The −838C>A (rs36228499), −79C>T (rs34330) and 326T>G (V109G, rs2066827) SNPs among the available Spanish cases and controls were genotyped to determine whether a significant association existed between them and thyroid cancer. Controls fulfilled HWE for all three SNPs (Table 1).

While V109G and −838C>A variants did not show significant associations with any of the thyroid cancer subtypes analyzed, rs34330 (−79C>T) was identified as a risk factor for developing the FVPTC. According to these results, the polymorphic TT genotype of rs34330 was significantly overrepresented in FVPTC patients. The variant fit a recessive model (OR = 2.12; 95% confidence interval (CI) = 1.09–4.15; P value = 0.023; Tables 2 and 3).

The previous association remained statistically significant after correcting for gender and age. We first proved that OR remained homogeneous (P value > 0.05) by Tarone’s test. Then, we demonstrated that neither gender nor age was acting as a confounding factor in our results by both Mantel–Haenszel test and stepwise conditional logistic regression, which yielded an adjusted OR = 2.01 and P value = 0.041.

Table 1 CDKN1B polymorphisms and samples genotyped

<table>
<thead>
<tr>
<th>Polymorphisms selected</th>
<th>Number of samples (n) genotyped in each groupa</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP (nucleotide change)</td>
<td>Controls (HWEb)</td>
</tr>
<tr>
<td>rs2066827 (T326G)</td>
<td></td>
</tr>
<tr>
<td>rs34330 (−79C>T)</td>
<td></td>
</tr>
<tr>
<td>rs36228499 (−838C>A)</td>
<td></td>
</tr>
</tbody>
</table>

MAF, minor allele frequency; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma; cPTC, classic PTC; FVPTC, follicular variant of PTC; FTC, follicular thyroid carcinoma.

aSamples without a genotype call were excluded.

bHardy–Weinberg equilibrium test to compare medians from qPCR assays by genotype.

cIn our control series (no data available in public databases).
Polymorphism K79C>OT decreases CDKN1B transcription rate in luciferase assays

Since the CDKN1B K79TT genotype was associated with a statistically significant increased risk in FVPTC patients, we sought to determine whether the K79C>OT genetic variation had functional consequences for p27Kip1 expression.

In a first set of experiments, we determined the transcriptional capacity of the two CDKN1B variant promoters by transfecting the pGL3 Basic Vector, pGL3-p27Kip1C and pGL3-p27Kip1T plasmids into HeLa cells. After 48 h in the presence or absence of serum, cells were collected and the transcriptional activity of the two promoter variants was determined by luciferase assay (Fig. 1A). We observed that the transcriptional activity shown by the variant promoter (p27Kip1T) was significantly lower than that shown by the wild-type promoter (p27Kip1C), both in the presence ($P \text{ value} = 0.001$) and absence ($P \text{ value} = 0.002$) of serum.

Then, we determined the activity of the different variants of the p27 promoter. To this end, HeLa cells were transfected with pGL3-p27Kip1C and pGL3-p27Kip1T constructs and starved. Starved cells were induced to re-enter the cell cycle by serum administration, and were analyzed for luciferase activity after 0, 12 and 24 h. After normalizing luciferase activity for the internal Renilla control, the average transcriptional activity of pGL3-p27Kip1T was consistently lower (by about 50%) than that of pGL3-p27Kip1C (Fig. 1B). The activity of the wild-type CDKN1B promoter (pGL3-p27Kip1C) increased in mid-G1 (12 h after serum administration) and decreased at the G1/S transition (24 h after serum administration), whereas the mutant p27 promoter (pGL3-p27Kip1T) showed similar kinetics but significantly reduced transcriptional activity ($P \text{ value}_{12 \text{ h}} = 0.002$, $P \text{ value}_{12 \text{ h}} < 0.001$ and $P \text{ value}_{24 \text{ h}} < 0.001$ respectively).

Subsequently, we analyzed the activity of the p27 promoter in thyrocytes. To this end, we used PCCl3 cells, an established, differentiated rat cell line, as a model of thyroid cells. PCCl3 cells were transfected with pGL3-p27Kip1C and pGL3-p27Kip1T, placed in a medium with or without TSH for 24 and 48 h, and

Table 2 Thyroid cancer risk and rs34330 (K79C>OT) genotype

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>OR*</th>
<th>95% CI</th>
<th>OR*</th>
<th>95% CI</th>
<th>OR*</th>
<th>95% CI</th>
<th>P values*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>385</td>
<td>1.00</td>
<td>0.72–1.38</td>
<td>0.93</td>
<td>0.48–1.82</td>
<td>0.93</td>
<td>0.49–1.79</td>
<td>0.834 NS</td>
</tr>
<tr>
<td>MTC</td>
<td>274</td>
<td>0.96</td>
<td>0.70–1.32</td>
<td>1.44</td>
<td>0.81–2.56</td>
<td>1.46</td>
<td>0.83–2.56</td>
<td>0.186 NS</td>
</tr>
<tr>
<td>PTC</td>
<td>328</td>
<td>0.91</td>
<td>0.63–1.33</td>
<td>1.05</td>
<td>0.51–2.18</td>
<td>1.09</td>
<td>0.53–2.23</td>
<td>0.819 NS</td>
</tr>
<tr>
<td>cPTC</td>
<td>178</td>
<td>1.08</td>
<td>0.70–1.65</td>
<td>2.20</td>
<td>1.10–4.38</td>
<td>2.12</td>
<td>1.09–4.15</td>
<td>0.023a</td>
</tr>
<tr>
<td>FVPTC</td>
<td>129</td>
<td>1.39</td>
<td>0.75–2.59</td>
<td>0.78</td>
<td>0.17–3.49</td>
<td>0.67</td>
<td>0.15–2.92</td>
<td>0.590 NS</td>
</tr>
<tr>
<td>FTC</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma; cPTC, classic PTC; FVPTC, follicular variant of PTC; FTC, follicular thyroid carcinoma.

*OR obtained by comparing cases against controls and considering T as the risk allele.

bThe P values are derived from the recessive model.

Table 3 Risks estimated for the CDKN1B polymorphisms genotyped in the follicular variant of papillary thyroid carcinoma (FVPTC)

<table>
<thead>
<tr>
<th>SNP (location)</th>
<th>Minor (MAF)</th>
<th>FVPTC (n)</th>
<th>WW versus WM</th>
<th>WW versus MM</th>
<th>(WW + WM) versus MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs36228499 (K838C>TA)</td>
<td>A (0.46)</td>
<td>108</td>
<td>1.00</td>
<td>0.55–1.79</td>
<td>1.16</td>
</tr>
<tr>
<td>rs34330 (K79C>OT)</td>
<td>T (0.21)</td>
<td>129</td>
<td>1.08</td>
<td>0.70–1.65</td>
<td>2.20</td>
</tr>
<tr>
<td>rs2066827 (T326G)</td>
<td>G (0.20)</td>
<td>100</td>
<td>0.80</td>
<td>0.50–1.28</td>
<td>1.24</td>
</tr>
</tbody>
</table>

W, wild-type allele; M, minor allele; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval.

aOR obtained by comparing cases against controls and considering the minor allele (M) as the risk allele.

bThe P values are derived from the recessive model.
analyzed for luciferase activity. After normalizing luciferase activity for the internal Renilla control, the average transcriptional activity of pGL3-p27Kip1T in thyrocytes was 50% compared with that of pGL3-p27Kip1C (P value = 0.001). This tendency was also observed when the cells were deprived of TSH.

The −79TT risk genotype exhibits diminished CDKN1B mRNA levels and a tendency towards lower protein levels in lymphocytes from control individuals

To confirm the in vitro data from the transfection experiments, we evaluated CDKN1B mRNA expression by real-time quantitative reverse transcription-PCR in lymphocytes from a series of 97 healthy controls with known −79C>T variant genotype. Genotypic frequencies in this subset were CC=0.59, CT=0.36 and TT=0.05, which were similar to the frequencies exhibited by the HapMap-CEU population. The mean C t values obtained for CDKN1B and GUS were 29.4 and 27.7 respectively. We observed a marginal statistically significant difference between the average CDKN1B mRNA expression of the CC and TT genotypes (P value = 0.069, Fig. 3A). This tendency was also observed when we clustered the non-risk CC and CT genotypes, and compared them against the TT risk group (P value = 0.102, Fig. 3B). These findings further suggest that the −79TT genotype is associated with decreased CDKN1B mRNA expression.

In addition, immunoblot experiments were performed to further check this downregulation, which suggest a modest effect of −79C>T-dependent p27Kip1 regulation at the protein level in lymphocytes (Fig. 4).
This is the first association study to investigate the effects of common genetic polymorphisms of the cell cycle regulator gene \(\text{CDKN1B} \) (p27Kip1) in thyroid cancer. Regression analysis allowed us to determine that the SNP rs34330 (\(K79C \)) located in \(\text{CDKN1B} \) promoter, was significantly associated with the FVPTC under a recessive model (OR \(2.12; P \text{ value} 0.023 \)). Furthermore, the functional assays designed to analyze its effect indicated that this SNP plays a role in \(\text{CDKN1B} \) transcription. This finding is of special relevance because although p27Kip1 has been widely studied in tumours (Slingerland & Pagano 2000, Chu et al. 2008) and specifically in thyroid cancer (Erickson et al. 1998, Tallini et al. 1999, Vitagliano et al. 2004), attention has been focused so far on p27\(^{\text{Kip1}}\) translation, degradation and mislocalization. Here, we report for the first time a differential transcription rate of \(\text{CDKN1B} \) depending on a genetic variant located in its promoter.

The polymorphism rs34330 has been previously associated with some other neoplasias. Chang et al. (2004) described an association of this SNP with hereditary prostate cancer. They reported that the C allele of the variant was over-transmitted from parents to their affected offspring. They also suggested that the polymorphism was able to disrupt a CpG site, a supposition that has not been demonstrated so far.

Moreover, a two-step large-scale association study, involving more than 2200 patients and more than 2200 controls, found the same variant to be associated with an increased risk of breast cancer in the British population (Driver et al. 2008). They described the same risk genotype (TT) reported here, also fitting a recessive model (OR \(1.22; P \text{ value} 0.013 \)).

In another recent study, this variant was related to the risk of lung cancer (OR \(1.27; 95\% \text{ CI} 1.01–1.60; \) Wang et al. 2007a), and it was especially strong among heavy smokers (OR \(6.24; 95\% \text{ CI} 1.67–23.34 \)).

Figure 3 Differential expression of \(\text{CDKN1B} \) in human lymphocytes, depending on \(-79C>T\) (rs34330) genotype. (A) \(\text{CDKN1B} \) mRNA levels in lymphocytes from 97 control individuals, depending on the genotype of the promoter \(-79C>T\) polymorphism. Data points represent the average normalized mRNA amounts from three measurements for each sample, assessed by real-time quantitative RT-PCR. Horizontal bars represent the mean value for each genotype group. (B) \(\text{CDKN1B} \) mRNA levels of CC+CT against TT carrier individuals show a significant difference between these groups, which backs up the recessive model proposed.

Discussion

This is the first association study to investigate the effects of common genetic polymorphisms of the cell cycle regulator gene \(\text{CDKN1B} \) (p27\(^{\text{Kip1}}\)) in thyroid cancer. Regression analysis allowed us to determine that the SNP rs34330 (\(-79C>T\)), located in \(\text{CDKN1B} \) promoter, was significantly associated with the FVPTC under a recessive model (OR \(2.12; P \text{ value} 0.023 \)). Furthermore, the functional assays designed to analyze its effect indicated that this SNP plays a role in \(\text{CDKN1B} \) transcription. This finding is of special relevance because although p27\(^{\text{Kip1}}\) has been widely studied in tumours (Slingerland & Pagano 2000, Chu et al. 2008) and specifically in thyroid cancer (Erickson et al. 1998, Tallini et al. 1999, Vitagliano et al. 2004), attention has been focused so far on p27\(^{\text{Kip1}}\) translation, degradation and mislocalization. Here, we report for the first time a differential transcription rate of \(\text{CDKN1B} \) depending on a genetic variant located in its promoter.

The polymorphism rs34330 has been previously associated with some other neoplasias. Chang et al. (2004) described an association of this SNP with hereditary prostate cancer. They reported that the C allele of the variant was over-transmitted from parents to their affected offspring. They also suggested that the polymorphism was able to disrupt a CpG site, a supposition that has not been demonstrated so far.

Moreover, a two-step large-scale association study, involving more than 2200 patients and more than 2200 controls, found the same variant to be associated with an increased risk of breast cancer in the British population (Driver et al. 2008). They described the same risk genotype (TT) reported here, also fitting a recessive model (OR \(1.22; P \text{ value} 0.013 \)).

In another recent study, this variant was related to the risk of lung cancer (OR \(1.27; 95\% \text{ CI} 1.01–1.60; \) Wang et al. 2007a), and it was especially strong among heavy smokers (OR \(6.24; 95\% \text{ CI} 1.67–23.34 \)).
The authors proposed that due to the location of this SNP, its functional effect might be associated with a reduced p27\(^{\text{Kip1}}\) protein production. Indeed, they remarked that the SNP was located in the 5\(^{\text{th}}\) UTR, where Millard et al. (2000) had described a ‘U-rich element’ that may bind several factors (HuR, hnRNP C1 and C2) involved in mRNA stability, processing and translation. However, the polymorphism rs34330 lies 27 nucleotides upstream of the consensus U-rich element defined by Millard et al. This fact, along with some contradictory in silico predictions that we obtained for the above-mentioned binding factors (data not shown), leads us to believe that this is not the mechanism underlying the observed SNP effect.

We hypothesized that rs34330 could alter CDKN1B transcription. In fact, two independent tools (CONSITE and TFSEARCH), based on different algorithms and integrated into the F-SNP database (Lee & Shatkay 2008), predicted that rs34330 is located within an important transcription factor binding site. Moreover, both tools predicted a differential affinity, and thus binding, of the human transcription factors AP-2\(\alpha\) and SP1 to the variant sequences. Especially, for the first factor, binding is predicted to be strongly influenced by the presence of the polymorphism.

The foregoing predictions were backed by a regulation mechanism described for some genes, which contain overlapping AP-2 and SP1 DNA-binding sites (Hilger-Eversheim et al. 2000). In these cases, gene transcription is regulated by the SP1/AP-2 ratio. This is of special interest, keeping in mind that AP-2\(\alpha\) is known to bind CDKN1A\(^{P21/cip1}\) (Zeng et al. 1997), a gene encoding a cell cycle inhibitor that belongs to the same family as CDKN1B\(^{p27/Kip1}\).

Overall, it is tempting to speculate that the above factors contribute to the functional effect of the polymorphism at least in the FVPTC, but specific functional studies focused on these factors will be necessary to prove this hypothesis.

The functional assays performed in the present study provide sufficient evidence to conclude that rs34330 (−79C>T) significantly influences CDKN1B transcription rates.

Thus, it should be considered as an alternative mechanism of p27\(^{\text{Kip1}}\) downregulation in thyroid cancer, independently of the precise transcription factors involved.

Regarding the two polymorphisms that were not found to be associated with thyroid cancer in the present study, there are no studies directly assessing the influence of rs36228499 (−838C>A) in cancer. Only a study by Spurilde et al. (2009) provides indirect evidence that this SNP, tagged by the neighbouring polymorphism rs3759216, does not modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. In contrast with the −838 variant, there are numerous studies that found a significant association between the CDKN1B-coding SNP rs2066827 (V109G) and cancer. Among them, those related to advanced prostate cancer (Kibel et al. 2003), oral squamous cell carcinoma (Li et al. 2004), invasive epithelial ovarian cancer (Gayther et al. 2007), high-grade breast tumours (Tigli et al. 2005) and lymph node metastasis in breast cancer (Naidu et al. 2007) are worth mentioning. However, our data, based on a large Spanish population, suggest that this amino acid change in p27\(^{\text{Kip1}}\) is not associated with any of the subtypes of thyroid cancer.

Taken together, we suggest that CDKN1B acts as a LPG in thyroid cancer, specifically associated with FVPTC. We propose that the −79C>T transition (rs34330) is the causal variant of a differential transcriptional expression of CDKN1B. These conclusions are supported by the following observations: a significant association in this first case–control study performed in thyroid cancer (risk genotype TT over-represented in FVPTC; OR=2.12, \(P\) value=0.023); the absence of a high correlation with neighbouring SNPs around this polymorphism, and the non-significant results for rs2066827 and rs36228499, which minimize the possibility of alternative variants being the causal ones; and the functional assays carried out show a tendency towards lower expression of CDKN1B in the presence of the risk genotype (TT) of rs34330, at both mRNA and protein levels. These findings point to an alternative downregulation mechanism of p27\(^{\text{Kip1}}\), which should be further explored in the cancer field.

Although these results have to be replicated in independent, representative and well-characterized thyroid cancer series, we propose the SNP rs34330, located in the CDKN1B promoter, as a genetic risk factor related to susceptibility for developing FVPTC. A biological explanation could be that the genetic alterations characterizing FVPTC are similar to those described in FTC, and are therefore related to the PI3K/Akt pathway. Regarding this, there are several genetic evidences suggesting that dysregulated PI3K/Akt pathway plays a significant role in the pathogenesis of thyroid tumours, particularly FTC (Hou et al. 2007, Riesco-Eizaguirre & Santisteban 2007, Wang et al. 2007b, Liu et al. 2008). Since p27\(^{\text{Kip1}}\) belongs to this pathway, an alteration in CDKN1B transcription rate caused by rs34330 could be of fundamental importance in these tumours.
Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by grants from FIS (Fondo de Investigaciones Sanitarias), reference PI080883 (to M Robledo), from Fundación Mutua Madrileña, reference AP2775/2008 (to M Robledo), and from the Italian Association for Cancer Research (AIRC) and PRIN 2006061439 from MIUR to G Viglietto. D Malanga and Association for Cancer Research (AIRC) and PRIN 2006061439 from MIUR to G Viglietto. D Malanga and

Acknowledgements
We thank Alessandra Di Gennaro for the technical support.

References

Millard SS, Vidal A, Markus M & Koff A 2000 A U-rich element in the 5′ untranslated region is necessary for the translation of p27 mRNA. Molecular and Cellular Biology 20 5947–5959.

