Rare metastases of differentiated thyroid carcinoma: pictorial review

Hong-Jun Song1, Yan-Li Xue1,2, Yan-Hong Xu1,2, Zhong-Ling Qiu1 and Quan-Yong Luo1

1Department of Nuclear Medicine, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China
2Postgraduate Department, Soochow University, 1 Shizi Road, Suzhou 215006, China

(Correspondence should be addressed to Q-Y Luo; Email: lqyn@sh163.net)

Abstract

Differentiated thyroid cancer (DTC) is usually indolent with good prognosis and long-term survival. However, DTC distant metastasis is often a grave event and accounts for most of its disease-specific mortality. The major sites of distant metastases are the lung and bone. Metastases to the brain, breast, liver, kidney, muscle, and skin are rare or relatively rare. Nevertheless, recognizing rare metastases from DTC has a significant impact on the clinical decision making and prognosis of patients. 131I single photon emission computed tomography/computed tomography (131I-SPECT/CT) can provide both metabolic and anatomic information about a lesion; therefore, it can better localize and define the 131I-WBS findings in DTC patients. In this pictorial review, the imaging features of a range of rare metastases from DTC are demonstrated, with a particular emphasis on the 131I-SPECT/CT diagnostic aspect.

Endocrine-Related Cancer (2011) 18 R165–R174

Introduction

Papillary and follicular carcinomas of the thyroid gland often referred to together as differentiated thyroid cancer (DTC), are characterized by a slowly progressive course, and a 10-year survival rate as high as 80–95% (Schlumberger 1998). It usually remains localized to the thyroid gland. Distant metastases are seen in a minority of patients and the reported rates of occurrence range from 4 to 15% (Hoie et al. 1988, Casara et al. 1993, Shaha et al. 1997, Clark et al. 2005, Aggarwal et al. 2007). The most common site of distant metastases is the lung, followed by the bone (Mazzaferri & Massoll 2002). Other distant metastases are rare or relatively rare and involve the brain, breast, liver, kidney, muscle, and skin. The presence of distant metastases is the most significant poor prognostic factor for survival, with only 50% metastatic patients surviving after 10 years (Elisei et al. 2010). Among the factors responsible for distant metastases and increased mortality in patients with DTC are age over 45 years and the involvement of multiple organs, both are independently associated with cancer mortality (Ruegemer et al. 1988). The common distant metastasis sites (lung and bone) from DTC usually draw significant concern and are well known to us. However, rare metastases, due to their extremely low incidence, are usually not taken into account or are ignored in the clinical setting. Nevertheless, recognizing the patterns of rare metastases from DTC has a significant impact on the clinical decision making and prognosis of patients.

Because of its high sensitivity and specificity, post-therapeutic 131I-WBS and 131I single photon emission computed tomography/computed tomography (131I-SPECT/CT) currently remain indispensable for the management of patients with DTC. 131I-SPECT/CT is of incremental value over 131I-WBS at increasing diagnostic accuracy, reducing pitfalls, and modifying therapeutic strategies (Spanu et al. 2009). Owing to the use of 131I-SPECT/CT imaging fusion techniques, rare metastasis in DTC is increasingly becoming an incidental finding (Chen et al. 2008, Qiu et al. 2011). This pictorial review highlights the diagnostic aspects of 131I-SPECT/CT for the localization and definition of rare metastases in DTC patients.

Brain metastasis

Brain metastases are extremely rare, reportedly occurring in roughly 0.15–1.3% of thyroid carcinomas.
(Parker et al. 1986). However, in all rare metastases, the brain was the most frequent locus of secondary metastasis from DTC in a study of a large cohort of patients (Dinneen et al. 1995). Dinneen et al. (1995) noted that ~18% of patients with distant metastases from PTC developed brain metastases during their disease course. It occurs more frequently in the cerebral hemispheres (Fig. 1); other sites for

Figure 1 131I-WBS, 131I-SPECT/CT, and magnetic resonance imaging (MRI) from a patient with brain metastases of papillary thyroid microcarcinoma. She was treated with 3.7 GBq of 131I for ablation of the post-surgical thyroid remnant and treatment of the lung metastases. Post-therapy 131I-WBS revealed a single cephalic uptake (A) of 131I in addition to the cervical and pulmonary uptake. 131I-SPET/CT fusion images showed cephalic foci located in the right side of the cerebrum (B and C). Further examination with MRI revealed a solitary metastatic lesion in the area of the right internal capsule of the cerebrum, with marked peritumoral edema extending from the tumor margin (D). MRI scan images obtained 3 months after the radiosurgery showed that the peritumoral edema had nearly disappeared along with almost complete response of the lesion (E). Reproduced, with permission, from Xu et al. (2011a).

Figure 2 A 26-year-old female with papillary thyroid cancer after thyroidectomy was treated with 3.7 GBq of 131I for ablation of the post-surgical thyroid remnant. 131I-WBS and 131I-SPECT/CT were performed after 131I therapy. Anterior 131I-WBS imaging detected two abnormal 131I uptake foci in the pharyngeal region (A, black arrows). 131I-SPECT/CT provided metabolic and anatomic information that the two foci of 131I uptake were localized in the left and right parapharyngeal spaces (B). High-resolution contrast-enhanced CT scans indicated left and right parapharyngeal masses (C, white arrows). Reproduced, with permission, from Qiu et al. (2011).
intracranial metastases are the cerebellum (Pazaitou-Panayiotou et al. 2005, Al-Dhahri et al. 2009) and pituitary (Chrisoulidou et al. 2004, Yilmazlar et al. 2004). Brain metastases are usually asymptomatic, and only a few have suggestive symptoms, including headache, visual disturbances, or ocular motor weakness. There is a general consensus in the literature that brain metastasis is associated with poor prognosis with a tendency for recurrence (Al-Dhahri et al. 2009).

Parapharyngeal metastasis

Parapharyngeal metastasis from DTC is quite rare, accounting for only 0.5% of all head and neck tumors (Pang et al. 2002). Totally, two relatively large numbers of DTC cases with parapharyngeal metastases have been described, suggesting that the incidence rate of parapharyngeal metastasis is extremely low (Desuter et al. 2004). Parapharyngeal mass is often nonspecific or asymptomatic when the tumor does not exceed 3.0 cm in size (Tomoda et al. 2005). Frequently, patients complain of a mass in the neck or oropharynx that causes dysphagia. Most parapharyngeal metastases are unilateral, whereas some rare cases are bilateral (Fig. 2). Integrated 131I-SPECT/CT is a useful tool for the screening of parapharyngeal metastasis in patients with DTC, especially earlier parapharyngeal metastasis (Qiu et al. 2011). Parapharyngeal metastasis should be included in the differential diagnosis of parapharyngeal masses.

Parotid metastasis

Involvement of the parotid gland from DTC is extremely rare and is mostly detected at autopsy (Alzaraa et al. 2008). In an analysis of 108 cases, three cases of a metastatic thyroid cancer metastasizing to the parotid were reported, with secondary metastases to the salivary glands (Seifert et al. 1986). Typically, it is an incidental finding in the clinical setting (Fig. 3).

Breast metastasis

Metastasis to the breast from DTC is extremely rare. To date, only 11 cases have been described in the

Figure 3 A 55-year-old woman who had a 4-year history of follicular thyroid cancer received 131I therapy for the treatment of lung metastases. Post-therapeutic 131I-WBS incidentally detected abnormal foci of 131I uptake in the left facial region (A, black arrow). 131I-SPECT/CT localized the lesion of 131I uptake in the left parotid gland, which was suspected of being metastasis because of the asymmetric 131I uptake in the bilateral parotids (B). Surgical pathology confirmed the diagnosis of the left parotid metastasis.

Figure 4 A 28-year-old woman with papillary thyroid cancer was treated with 131I for ablation of a post-surgical thyroid remnant. An unexpected focus of abnormal 131I uptake in the superficial left chest wall was observed on the post-ablation 131I-WBS (A, shown by arrow), and it was difficult to decide whether it was a real lesion or a site of 131I contamination on the skin based on the planar images alone. Therefore, 131I-SPECT/CT was performed to accurately localize the foci of 131I uptake. The images clearly showed that the abnormal 131I uptake in the left chest wall was located in the left vice-mammary gland (B, C, and D). Finally, ultrasound-guided fine needle aspiration (FNA) demonstrated that the lesion was metastasis from papillary thyroid cancer.

Endocrine-Related Cancer (2011) 18 R165–R174

www.endocrinology-journals.org
literature (Chisholm et al. 1980, Tan et al. 1991, Cristallini et al. 1994, Loureiro et al. 1997, Fiche et al. 1998, Al-Abed et al. 2008, Angeles-Angeles et al. 2009). All of the patients were female, with four papillary and three follicular types in the primary tumor. Mammary gland metastasis from DTC is even rare (Fig. 4) and has not been reported to date. Breast metastasis usually occurs in the setting of disseminating metastases. However, Loureiro et al. (1997) reported a unique case of a follicular variant of papillary thyroid carcinoma, with three cutaneous and one breast metastases in the absence of other sites of dissemination. It seems that metastatic disease to the breast tends to be superficial and usually located at the upper outer quadrant. Metastases to the breast are associated with poor prognosis.

Liver metastasis

Liver metastasis from DTC is a rare event, with a reported frequency of 0.5% (Salvatori et al. 2004). Only ten cases have been documented in the literature; three were males and seven were females, with an average age of about 63 years (range from 32 to 85 years). Histologically, the primary tumor was identified as papillary in four patients, follicular in five patients, and Hurthle cell thyroid cancer in one patient. Liver masses can be detected by various imaging modalities, such as ultrasonography and CT, and are usually 131I negative. 131I-positive metastases are extremely rare (Fig. 5). DTC liver metastasis has a poor prognosis. Surgical resection of liver lesions has been reported to offer the best chance for prolonged survival (Niederle et al. 1986).

Figure 5 131I-WBS and 131I-SPECT/CT fusion images from a patient who received a thyroidectomy for follicular thyroid cancer. After 25 years, she was treated with 7.4 GBq of 131I for bone metastases in the pelvis. Post-therapeutic 131I-WBS demonstrated a star, irregular, and intense radioactivity signature in the right upper part of the abdomen in addition to the pelvic uptake. (A). To accurately locate the 131I uptake lesion, 131I-SPECT/CT was performed and the 131I uptake was localized in a large liver mass (B, C, D, and E). Fine needle aspiration confirmed the diagnosis of liver metastasis from follicular thyroid cancer.

Figure 6 A 19-year-old patient who had a 8-year history of papillary thyroid cancer developed systemic multiple metastases. Post-therapeutic 131I-WBS showed strong focal tracer uptake in the regions of the head, lung, abdomen, and limbs (A). The 131I uptake in the abdominal region (A, shown by arrows) drew our attention. Subsequent 131I-SPECT/CT of the abdomen revealed two separate lesions that were localized in the bilateral renal masses (B–D).
Renal metastasis

Clinical detection of DTC metastasis to the kidney is infrequent. To the best of our knowledge, only 25 cases have been reported in the literature. Most of the subjects were females >45 years of age. Kidney metastasis usually appears in the setting of multifocal metastases in the body (Fig. 6). Liou et al. (2005) reported the first and only case of metastatic papillary thyroid microcarcinoma in the kidney with wide dissemination (including renal, pulmonary, and pelvic bony metastases). Renal metastasis can develop several years (occasionally decades) after removal of the primary thyroid cancer. This finding is consistent with the slow course of DTC. However, DTC renal metastasis presenting as a primary renal tumor has been reported by Graham & Roe (1995) and Ruggiero et al. (2005). Therefore, intense 131I uptake in the abdomen by 131I-WBS should not be assumed to simply be physiological gastrointestinal tract uptake or a false-positive finding (Langsteger et al. 1993, McDougall 1995, Brucker-Davis et al. 1996); the suspicion of a renal metastasis should be raised and effectively excluded.

Adrenal metastasis

Adrenal metastasis from DTC is generally asymptomatic and is often associated with lung or bone metastases. The first case of a patient with an adrenal metastasis secondary to Hurthle cell carcinoma has...
been reported by Orsolon et al. (1996). Although adrenal and renal metastases are closely related in terms of anatomy, concomitant adrenal and renal metastases from DTC are exceptional, as only two cases have been reported in the literature (Kumar et al. 2005, Malhotra et al. 2010). ¹³¹I-avid adrenal metastasis is very rare. Koutkia & Safer (2001) described the first case of a solitary, functioning adrenal metastasis secondary to papillary thyroid carcinoma, and it was found by ¹³¹I-WBS. The majority of adrenal metastases are detected by other medical imaging modalities (Fig. 7).

Ovarian metastasis

The rarity of ovarian metastasis from DTC is supported by a review of the literature, where only three cases have been reported (Young et al. 1994, Logani et al. 2001, Brogioni et al. 2007). It seems that ovarian metastasis tends to occur unilaterally rather than bilaterally (Fig. 8). Bilateral ovarian metastasis from papillary thyroid cancer has been reported by Brogioni et al. (2007). Ovarian metastasis from DTC tends to occur many years after the primary tumor is discovered. Because of the long intervals, when there is a woman who presents with a cystic ovarian mass, the differential diagnoses to consider should include ovarian metastasis from DTC. Therefore, the patient history should be thoroughly investigated for evidence of a prior neoplasm in the thyroid gland.

Muscle metastasis

Although more than 40% of the total human weight comprises skeletal muscle, hematogenous metastasis to skeletal muscle is extremely rare. A hypothesis is that skeletal muscle is a hostile environment for the retention and proliferation of cancer cells, including muscle motion, unadapted muscle pH, and the muscle’s ability to remove tumor-produced lactic acid (Seely 1980). A retrospective review of the literature revealed only ten reports of DTC muscle metastases. It seems that DTC is prone to metastasizing to the erector spinae, as three of the ten cases were erector spinae metastases (Luo et al. 2008, Qiu & Luo 2009). Muscle metastases are generally associated with other distant

Figure 9 A 29-year-old patient presenting with locoregional lymph nodes and pulmonary metastases from papillary thyroid cancer was treated with ¹³¹I. The post-therapeutic ¹³¹I-WBS revealed two abdominal foci of ¹³¹I uptake (A, solid line arrows and dashed line arrows) in addition to the cervical and pulmonary uptake. The ¹³¹I-SPECT/CT fusion images identified abdominal foci located in the area of the right kidney (B) and lower back muscle (C). High-resolution CT further confirmed a solitary lesion on the upper pole of the right kidney (D, E, solid line arrow) and a solitary lesion in the right erector spinae (F, G, dashed line arrow). Reproduced, with permission, from Luo et al. (2008).
metastases (Fig. 9). An elderly hyperthyroid patient presented with single metastasis in the right arm bicep without any other metastasis (Pucci et al. 2006). Most skeletal muscle metastases are neither painful nor palpable; therefore, muscle metastases tend to be an incidental finding in the clinical setting.

Skin metastasis

DTC skin metastasis typically presents as slowly growing erythematous or nodules, usually on the scalp, face, or neck. The scalp is the most common site, being involved in approximately two-thirds of cases (Dahl et al. 1997). This may relate to local vascular factors essential for the highly complex nature of metastasis (Avram et al. 2004). Cutaneous metastases in the genital area are less common. Shon et al. (2010) reported the first case of ulcerated skin nodules in the scrotum from Hurthle cell carcinoma of the thyroid. Limb skin metastasis is rare (Fig. 10). Skin lesions may be solitary or multiple and are almost always asymptomatic. Ulceration is uncommon. Varma et al. (2007) reported three clinically interesting cases of papillary cancer presenting with skin ulceration. Although the presence of cutaneous metastases in patients with thyroid cancer portends a poor prognosis, understanding the clinical manifestation determines the overall management of the patients.

Summary and conclusion

In conclusion, DTC, which ordinarily behaves in an indolent manner, can have unusual metastatic presentations and patterns. 131I-WBS and 131I-SPECT/CT play an important role in the management of patients with DTC. With the popularity of 131I treatment and the emergence of 131I-SPECT/CT fusion imaging techniques, rare metastases in DTC may not be as rare as we once thought and may be increasingly common. Increasing importance should be given to rare metastases in DTC patients. This review highlights the need for an awareness of the possibility of unique metastatic deposits of DTC at unexpected sites. Care should be taken to determine whether 131I uptake found at an unexpected site is DTC metastasis or false-positive uptake.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.
References

Received in final form 27 April 2011
Accepted 31 May 2011
Made available online as an Accepted Preprint 1 June 2011