FOCUS REVIEW

Insulin and its analogues and their affinities for the IGF1 receptor

Aimee J Varewijck and Joseph A M J L Janssen

Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Room D-443, ’s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands

(Correspondence should be addressed to J A M J L Janssen; Email: j.a.m.j.l.janssen@erasmusmc.nl)

Abstract

Insulin analogues have been developed in an attempt to achieve a more physiological replacement of insulin and thereby a better glycaemic control. However, structural modification of the insulin molecule may result in altered binding affinities and activities to the IGF1 receptor (IGF1R). As a consequence, insulin analogues may theoretically have an increased mitogenic action compared to human insulin. In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health problem, since these analogues may possibly induce the growth of pre-existing neoplasms. This hypothesis has been evaluated extensively in vitro and also in vivo by using animal models. In vitro, all at present commercially available insulin analogues have lower affinities for the insulin receptor (IR). Although it has been suggested that especially insulin analogues with an increased affinity for the IGF1R (such as insulin glargine) are more mitogenic when tested in vitro in cells expressing a high proportion of IGF1R, the question remains whether this has any clinical consequences. At present, there are several uncertainties which make it very difficult to answer this question decisively. In addition, recent data suggest that insulin (or insulin analogues)-mediated stimulation of IRs may play a key role in the progression of human cancer. More detailed information is required to elucidate the exact mechanisms as to how insulin analogues may activate the IR and IGF1R and how this activation may be linked to mitogenesis.

Endocrine-Related Cancer (2012) 19 F63–F75

The introduction of insulin analogues in the treatment of diabetes

The discovery of insulin by Banting and Best in 1922 represented a milestone in clinical medicine. It has saved the lives of many who would otherwise have died, but its unforeseen effect was to transform an acute, rapidly fatal illness into a chronic disease with serious long-term complications (Tattersall 2003).

In the late-80s of the past century, methods were developed that allowed insulin to be made in the laboratory. These methods have permitted the production of limitless quantities of human insulin for therapeutic use.

The human insulin molecule is secreted by the pancreas and consists of two polypeptide chains A and B that are linked by two disulphide bridges (Fig. 1). In the body, insulin exists as monomers, dimers and as hexamers (consisting of six monomers which self-associate in conjunction with zinc ions). An adaptation of beta-cell insulin production is the self-association of insulin molecules, at high concentrations, in conjunction with zinc ions into hexamers (Emdin et al. 1980). This process provides efficient spatial storage within the beta-cell vesicles, but dilution upon exocytosis ensures immediate dissociation into dimers (association of two insulin molecules) and finally into monomers. Monomers are the biologically active forms that bind to the insulin receptor (IR).

Insulin complexed to zinc ions dissociates only slowly into insulin monomers. Therefore, these preparations are used to maintain basal insulin levels (i.e. levels required in a fasting state). During a meal, more rapid-acting monomeric insulin is needed to provide meal-related increased insulin requirements.

The first available insulin preparations failed to simulate physiological insulin profiles. However,
through genetic engineering of DNA, the amino acid sequence of natural insulin could be changed in such a way that alterations were made in absorption, distribution, metabolism and excretion characteristics of this molecule. Interestingly, although these modified molecules are more commonly referred to as insulin analogues, the U.S. Food and Drug Administration (FDA) refers to these also as ‘IR binding agonists’ (Guidance for industry diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention, www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071624.pdf). Two main groups of insulin analogues can be distinguished in 1) short-acting insulin analogues, genetically engineered in such a way that they dissociate more rapidly following injection and in 2) long-acting insulin analogues, which show a delayed absorption or a prolonged duration of action (see below).

Binding of insulin analogues to the IR and the IGF1 receptor

Structural modification of the insulin molecule may result in altered binding affinities and activities to the IR and/or the insulin-like growth factor 1 receptor (IGF1R). As a consequence, insulin analogues may have an increased/decreased metabolic action and an increased/decreased mitogenic action than human insulin.

The amino acid residues in the insulin molecule that are essential for binding to the IR have been identified (Slieker et al. 1997). Especially, modifications at positions in the B26–B30 region, i.e. the C-terminus of the B-chain, do not seem to significantly influence insulin binding to the IR (Nakagawa & Tager 1987, Kurtzhals et al. 2000; Fig. 1). However, this region is important for at least two reasons. First, these amino acids are important for insulin dimerisation (Bi et al. 1984, Mayer et al. 2008). Modification of this latter region reduces the stability of monomer–monomer interactions and this effect has been used to generate monomeric insulin analogues with only slight changes in affinity for the IR.

Secondly, substitutions of amino acids in the B-chain result in insulin molecules which show increased structural homology with IGF1 and as a consequence have an increased affinity for the IGF1R (Slieker et al. 1997, Kurtzhals et al. 2000). Proline at position 28 and lysine at position 29 is the natural sequence which is present in the B-chain of human insulin (Fig. 1). The number and position of basic or acid residues in this region seem very important for IGF1R binding (Slieker et al. 1997). Substitution of position B28 with
The common origin of insulin, IGFs and their receptors

The structural and functional similarities between insulin and IGFs provide strong evidence that the genes encoding for these ligands are derived from a common ancestor gene (Chan & Steiner 2000).

The major structural difference between insulin and the IGFs is that the IGFs are single-chain polypeptides containing an A-, B-, C- and D-domain, whereas the insulin molecule contains a separate A- and B-chain, generated by cleavage from a single-chain proinsulin, which are bound by two disulphide bridges (Humbel 1990, Sussenbach et al. 1992). In primary sequence, human insulin, IGF1 and IGF2 share 50% amino acid identity in the A- and B- domains (Rinderknecht & Humbel 1978).

As insulin and the IGFs probably arose during evolution by gene duplication, there is the hypothesis that the IR and IGF1R were also created by gene duplication of a common precursor receptor molecule (De Meyts et al. 2007). Depending on which regions are being compared, the IR and IGF1R have sequence similarities varying from 41 to 84%. Both the IR and IGF1R are composed of two monomers, each comprising an extracellular alpha-subunit and a transmembrancn beta-subunit which are linked by a disulphide bridge. They belong to the family of ligand-activated receptor kinases. Unlike other tyrosine receptor kinases, these receptors exist at the cell surface as homodimers composed of two identical alpha/beta monomers, or as heterodimers composed of two different receptor monomers (Fig. 2). Binding of a ligand to the extra-cellular alpha-subunit induces the receptors to undergo a conformational change enabling autophosphorylation of the intrinsic tyrosine kinase domains within the transmembrancn beta-subunits, which is the first step in the intracellular signalling cascade.

The structures of the IR and IGF1R resemble each other to such an extent that insulin and IGFs can interact with each other’s receptor, although with quite different affinities. The IR demonstrates high affinity binding to insulin (10^{-10} M), tenfold lower affinity for IGF2 and a 50- to 100-fold lower affinity binding for IGF1 (Blakesley et al. 1996). In this respect, it has been shown that there are differences between the IR-A and IR-B; IGF2 having a higher affinity for IR-A than for IR-B. On the other hand, the IGF1R binds the IGFs with a high affinity (10^{-10} M), but binds insulin with a 100-fold lower affinity (Blakesley et al. 1996).

The conventional view regarding the actions of insulin, the IGFs and their receptors is that insulin and the IR mainly mediate metabolic responses, whereas IGFs and the IGF1R mediate growth-promoting effects (LeRoith et al. 1995, Siddle et al. 2001). Nevertheless, evidence exists showing that insulin and IGF1 can mediate very similar responses (Froesch et al. 1993). IGF1 can exert acute metabolic effects like insulin, while insulin in turn, can substitute for IGF1 inducing...
growth-promoting and differentiation enhancing activities (Froesch et al. 1993). In addition, also the IR and IGF1R share very similar intracellular signalling pathways (Vigneri et al. 2009; Fig. 3). Moreover, studies have suggested that differences between IR-A and IR-B in terms of receptor activation and signalling may result in different functions of each IR isoform (Belfiore et al. 2009). Hence, the general consensus is that the IR and IGF1R besides their distinct functions, also have overlapping functions.

What determines growth-promoting and metabolic effect actions of Insulin and IGF1?

Structural differences of the beta-subunit and kinase domains of the IR and the IGF1R leading to differences in substrate interactions have been suggested to be partly responsible for insulin-IGF1 specificity (Dupont & LeRoith 2001). Moreover, the signal transduction by the receptors may not be limited to its activation at the cell surface. It has been suggested that the activated ligand–receptor complex, initially at the cell surface, is internalised into endosomes and that the lifetime of this complex within the endosomes might be an important factor in influencing the types of response produced by a particular receptor (Bevan 2001). However, the role of ligand internalisation and endosomal residence time as mechanism of selective signalling has yet never been confirmed.

Although the IR and IGF1R have distinct and overlapping functions, it was recently suggested that in vivo specificity of insulin and IGF1 reflects at least in part the levels and timing of the expression of IRs and IGF1Rs in target tissues in combination with ligand concentration and availability (Boucher et al. 2010). As Boucher stated: IR and IGF1R act as identical portals for the regulation of gene expression, with differences between insulin and IGF1 effects due to a modulation of the amplitude of the signal created by the specific ligand–receptor interaction (Boucher et al. 2010).

Many details of insulin/IGF1 signalling remain to be clarified including the specific roles of hybrids (Fig. 2). In some tissues and cells where significant levels of both IRs and IGF1Rs are present, hybrids may be formed. These hybrids are heterodimeric receptors consisting of an IR-alpha/beta monomer and an IGF1R-alpha/beta monomer linked by disulphide bonds. Such hybrids are probably formed during normal post-translational processing of both receptors (LeRoith et al. 1995) and are widely expressed on normal tissues and often aberrantly expressed in cancer cells (Pandini et al. 2002). Although the precise biological role of these hybrids is still unclear, it has been suggested that hybrid receptors may play a role in the overlapping functions of insulin and IGF1 (LeRoith et al. 1995).
et al. 1995). Binding of insulin to a hybrid receptor would result in autophosphorylation of its own beta-subunit which, through subsequent transphosphorylation, activates the beta-subunit of the IGF1R monomer, resulting in a growth-promoting signal (LeRoith et al. 1995). In the other way around, IGF1 binding to a hybrid receptor would result in autophosphorylation of its own beta-subunit which could activate the beta-subunit of the IR monomer by the same mechanism, thereby promoting metabolic actions (LeRoith et al. 1995). Although this could explain why insulin under certain circumstances may induce cellular proliferation and IGF1 may stimulate metabolic functions, functional studies have demonstrated that hybrid receptors behave more like IGF1Rs than IRs (Pandini et al. 2002).

The story of the first rapid-acting analogue insulin X10

The first rapid-acting insulin analogue was developed by replacing a histidine residue for the negatively charged aspartic acid at position B10 (insulin X10 or B10Asp; Hansen et al. 2011). The applied genetic modification led to disrupting the ability of insulin molecules to self-associate as hexamers. Therefore, after s.c. injection of insulin X10, a much higher and earlier insulin peak was reached. Although clinical results were quite promising (Nielsen et al. 1995), further development of this analogue was discontinued when a dose-dependent increase in the occurrence of mammary tumors was observed in female Sprague–Dawley rats that were treated with supraphysiological doses of insulin X10 (Drejer 1992).

Insulin X10 has been shown to induce enhanced mitogenic effects due to the activation of both the IRs and the IGF1Rs (Milazzo et al. 1997). In most studies, its binding affinity for the IR has been found to be 200–400% higher than that of human insulin (Hansen et al. 2011). Although it has an identical ‘on-rate’, it has a much slower ‘off-rate’ from the IR than human insulin (Drejer et al. 1991). In addition, its affinity for the IGF1R has been found to be increased compared to human insulin, although fairly lower compared to IGF1 (Drejer et al. 1991). Both effects may have resulted in an increased mitogenicity of this insulin analogue.

Currently available insulin analogues

Currently, there are three rapid-acting insulin analogues (insulin lispro, insulin aspart and insulin glulisine) and two long-acting insulin analogues (insulin glargine and insulin detemir) commercially available.
Rapid-acting insulin analogues

Insulin lispro (LysB28, ProB290 human insulin) was the first clinically available insulin analogue (Fig. 1). In insulin lispro, the natural amino acid sequence of the B-chain is reversed at positions 28 and 29. As a consequence, there is a proline at position 28 and a lysine at position 29, like in IGF1 (Fig. 1). This amino acid sequence reduces the ability of insulin to self-associate, leading to a significantly higher absorption and elimination rate than that of human insulin after s.c. injection. For insulin aspart (AspB28), another strategy is used to reduce self-association (Fig. 1). Insulin aspart is obtained by changing proline at position B28 by the negatively charged amino acid aspartic acid. The pharmacokinetic and pharmacodynamic characteristics of insulin aspart resemble and are very similar to that of insulin lispro. For both insulin analogues, the affinities for the IR and the IGF1R have been reported to be similar to that of human insulin (LeRoith et al. 1995, Owens 2000, Vigneri et al. 2010).

Insulin glulisine has been developed by substituting aspartic acid at position B3 with lysine and lysine at position B29 with glutamine (Fig. 1). These changes also reduce the self-association when injected s.c. and thereby provide a quick biological availability after injection. Insulin glulisine has similar or slightly less binding affinity for the IR than human insulin. In addition, it has been suggested that IGF1R binding affinity is significantly lower than that of human insulin (Stammberger et al. 2006).

Long-acting insulin analogues

Two strategies to protract absorption by genetically modifying the insulin molecule have been tested clinically (Havelund et al. 2004).

The first principle was to shift the isoelectric point of the molecule towards neutrality to provide reduced solubility at physiological pH values. This principle has been used for insulin glargine (GlyA21, ArgB31, ArgB32 human insulin); so it is injected as an acid solution (pH 4.0) and forms a slowly absorbed precipitate in the neutral environment of the subcutis. This property means that it cannot be mixed with neutral formulations of other insulins. Insulin glargine has been produced by substituting asparagine with glycine in the A-chain at position 21 and by adding two arginine residues to the B-chain at position 30 (Fig. 1).

In *in vitro* studies using rat fibroblast cells showed similar binding characteristics for insulin glargine and human insulin. The IGF1R binding affinity in *in vitro* on cardiac myocytes has been reported to be stronger than that for human insulin (Owens 2000). However, native insulin glargine and its metabolites M1 and M2 are released from the subcutaneous depot and M1 has been found to be the most abundant in the circulation and is therefore most likely to be the biologically active form (Kuerzel et al. 2003). This ultimately makes it even more difficult to interpret the *in vitro* results of insulin glargine.

Another strategy to protract absorption has been to acylate fatty acid species to the insulin molecule to allow reversible albumin–insulin binding in an attempt to protract the time action profile while retaining the practical advantages of a neutral liquid preparation. This strategy has been applied to insulin detemir (LysB29 (N-tetradecanoyl) des (B30) human insulin). In insulin detemir, the ε-amino group on the side-chain of lysine at position B29 is acylated, while threonine at position B30 is removed (Fig. 1). After s.c. injection, insulin detemir binds to albumin through this fatty acid chain (Owens 2000, Vigneri et al. 2010). This binding prolonged half-life in pigs to 14.3 h as compared to 10.5 h with NPH insulin and reduces the biological availability of free insulin detemir, making it more predictable in terms of the risk for hypoglycaemic episodes (Markussen et al. 1996, Vague et al. 2003, Havelund et al. 2004, Heise et al. 2004).

The affinity of insulin detemir for the IR has been found to be reduced, both *in vitro* and *in vivo* (Markussen et al. 1996). *In vivo*, fourfold higher doses were required to obtain a similar blood glucose-lowering effect as observed after regular insulin injections or injections with other insulin analogues. Therefore, the commercially available insulin detemir has a fourfold concentrated formulation in order to match the biological potency of human insulin (Owens & Bolli 2008).

The binding affinity of insulin detemir to IGF1R is as low as its affinity to the IR. The ratio between IR affinity and IGF1R affinity is therefore approximately the same as that for human insulin (Hastings KL (2005) US FDA Pharmacology and Toxicology Review of Insulin Detemir, 2003, www.accessdata.fda.gov/drugsatfda_ docs/nda/2005/021-536_Levemir_pharmr.PDF).

Methods to assess the metabolic activity and mitogenic activity of insulin and insulin analogues

As previously discussed, insulin and insulin analogues may have different metabolic and mitogenic activities. In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health
In the following section, we will give a summary of the key findings of the \textit{in vitro} and \textit{in vivo} effects of insulin analogues that have been reported in the literature.

\textbf{\textit{In vitro}ex \textit{vivo} cell culture systems}

Insulin analogues have been tested for their affinity to the IR and IGF1R, their metabolic potency, their mitogenic potency and their dissociation rate from the IR.

\textit{In vitro}, all at-present commercially available insulin analogues have lower affinities for the IR (Table 1). In contrast, insulin X10 has significantly higher affinity for the IR than human insulin.

All \textit{in vitro} studies have documented that insulin X10 and the long-acting insulin analogue insulin glargine have a higher affinity for the IGF1R than human insulin (Table 2). Affinity for the IGF1R for all available insulin analogues, except insulin lispro, is significantly lower than that for IGF1 (Table 2).

Until now, insulin X10 is the only insulin analogue which has been shown to be metabolically more potent \textit{in vitro} than human insulin (Table 3). All other currently commercially available insulin analogues show equal or less metabolic potency than human insulin (Table 3).

Both insulin X10, B31B32diArg and insulin glargine have higher mitogenic potencies \textit{in vitro} than human insulin, while most commercially available insulins show less mitogenic activity \textit{in vitro} than human insulin (Table 3). However, in all circumstances, the mitogenic potency of insulin analogues was significantly lower than that for IGF1. A recent paper compared the insulin analogues for mitogenic effects (cell proliferation and colony formation) in engineered cells expressing only one receptor type (IR-A, IR-B or IGF1R) in order to analyse the individual contribution of each receptor type (Sciacca \textit{et al.} 2010). They found that the long-acting insulin analogues insulin glargine and insulin detemir, through all three receptors, induced significantly more cellular proliferation than human insulin and short-acting insulin analogues. Interestingly, although only a significant effect was reported for insulin X10, all insulin analogues (except insulin glargine) induced more anchorage-independent cell growth \textit{in vivo} (a transformation marker) through the IR-A than human insulin (Table 4).

As previously discussed, occupancy time at the IR has been correlated with mitogenic potential. Insulin X10, insulin aspart and B31B32diArg have a lower insulin off-rate than human insulin, while the other insulin analogues (like insulin glargine) show a higher IR off-rate (Table 1). Whether the same phenomenon...
plays a role for the IGF1R has not yet been studied and is therefore still unknown.

There is conflicting evidence as to whether or not the mitogenic effects of insulin and insulin analogues at high doses are mediated via the IR and/or the IGF1R. The ratio of IGF1Rs:IRs may play a role in the sensitivity of cells to insulin and insulin analogues in vitro (Zelobowska et al. 2009). Differences in this ratio between different cell lines may explain at least partly the observed differences in mitogenic potencies of insulin analogues; for example, an increased potency of insulin glargine is only seen in cells with a relatively high proportion of IGF1R (Table 5; Hansen 2008). However, also this is not a consistent finding. Staiger et al. (2007) failed to detect any increased mitogenicity of insulin glargine in MC7-cells, despite the fact that these cells express fourfold more IGF1Rs compared to IRs. They suggested that a certain ratio of IGF1Rs:IRs is needed before insulin glargine induces a mitogenic response (Hansen 2008). On the other hand, as mentioned before, Sciacca et al. (2010) compared the analogues for mitogenic effects in engineered cells expressing only one receptor type (IR-A, IR-B or IGF1R) and found that the mitogenic effects were also induced in cells not expressing the IGF1R.

Furthermore, IR and IGF1R expression may vary in a tissue-specific manner and inter-individual differences in the levels of proteins of the IGF1R system may function as a critical determinant of the mitogenic potency of insulin analogues (Eckardt et al. 2007).

Thus, the question remains whether all these in vitro observations may have any clinical implications. There are several uncertainties which make it very difficult to answer the question decisively (Hansen 2008). There seems to be a consensus that insulin and insulin

Table 1 Affinity and off-rate of commercially available insulin analogues for the insulin receptor

<table>
<thead>
<tr>
<th>Analogue</th>
<th>Insulin receptor affinity (%)</th>
<th>Insulin receptor off-rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human insulin</td>
<td>100(^a)</td>
<td>100(^b)</td>
</tr>
<tr>
<td>X10</td>
<td>205(^a)</td>
<td>817(^b)</td>
</tr>
<tr>
<td>Aspart</td>
<td>92(^a)</td>
<td>ND</td>
</tr>
<tr>
<td>Lispro</td>
<td>84(^a)</td>
<td>ND</td>
</tr>
<tr>
<td>Glargine</td>
<td>86(^a)</td>
<td>59(^b)</td>
</tr>
<tr>
<td>Glargine M1</td>
<td>ND</td>
<td>48(^b)</td>
</tr>
<tr>
<td>Glargine M2</td>
<td>ND</td>
<td>53(^b)</td>
</tr>
<tr>
<td>A21Gly</td>
<td>78(^a)</td>
<td>ND</td>
</tr>
<tr>
<td>B31B32diArg</td>
<td>120(^a)</td>
<td>ND</td>
</tr>
<tr>
<td>Detemir</td>
<td>46(^b)</td>
<td>ND</td>
</tr>
<tr>
<td>Glulisine</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>IGF1</td>
<td>ND</td>
<td>0.8(^b)</td>
</tr>
</tbody>
</table>

All values relative to human insulin. ND, not determined.
\(^a\)Data from Kurtzhals et al. (2000).
\(^b\)Data from Sommerfeld et al. (2010) (IR-A).
\(^c\)Data from Sommerfeld et al. (2010) (IR-B).
\(^d\)Data from Sciacca et al. (2010) (IR-A).
\(^e\)Data from Sciacca et al. (2010) (IR-B).
\(^f\)Data from Hansen (2008).
\(^g\)Data from Sliker et al. (1997).
\(^h\)Data from Markussen et al. (1996).
\(^i\)Data from Stammberger et al. (2006).
\(^j\)Data from Hennige et al. (2005).

Table 2 Affinity of insulin, insulin analogues and insulin-like growth factor 1 (IGF1) for the IGF1 receptor

<table>
<thead>
<tr>
<th>Analogue</th>
<th>IGF1 receptor affinity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human insulin</td>
<td>100(^a)</td>
</tr>
<tr>
<td>X10</td>
<td>587(^a)</td>
</tr>
<tr>
<td>Aspart</td>
<td>81(^a)</td>
</tr>
<tr>
<td>Lispro</td>
<td>156(^a)</td>
</tr>
<tr>
<td>Glargine</td>
<td>641(^a)</td>
</tr>
<tr>
<td>Glargine M1</td>
<td>ND</td>
</tr>
<tr>
<td>Glargine M2</td>
<td>–</td>
</tr>
<tr>
<td>A21Gly</td>
<td>42(^a)</td>
</tr>
<tr>
<td>B31B32diArg</td>
<td>2049(^a)</td>
</tr>
<tr>
<td>Detemir</td>
<td>16(^a)</td>
</tr>
<tr>
<td>Glulisine</td>
<td>ND</td>
</tr>
<tr>
<td>IGF1</td>
<td>ND</td>
</tr>
</tbody>
</table>

All values relative to human insulin. ND, not determined.
\(^a\)Data from Kurtzhals et al. (2000).
\(^b\)Data from Sommerfeld et al. (2010).
\(^c\)Data from Sliker et al. (1997).
\(^d\)Data from Sciacca et al. (2010).
\(^e\)Data from Stammberger et al. (2006).
analogues have growth-promoting activity (Sandow 2009). Moreover, insulin and insulin analogues have no carcinogenic activity (cell transformation) and are not a co-carcinogen when evaluated in special toxicology (Sandow 2009). Although Giorgino et al. (1991) found that supraphysiological overexpression of IRs does favour ligand-dependent cell transformation in vitro, which underlines the potency of insulin to do so, it certainly does not mean that this occurs in vivo. On the other hand, one should keep in mind that increased mitogenic activity per se might increase the chances of mutations, thereby initiating tumour formation. However, circulating concentrations of injected insulin analogues are normally quite low compared to the levels needed to elicit a mitogenic response (Hansen 2008).

As previously discussed, it has been suggested that the IR and IGF1R act at identical portals to the regulation of gene expression, with differences between insulin and IGF1 effects due to a modulation of the signal created by the specific ligand–receptor interactions (Boucher et al. 2010). As a consequence, it is almost impossible in most in vitro cell lines to disentangle the individual contribution of each type of receptor to the final downstream event. In this respect, Sciacca et al. (2010) have made a great effort when they compared analogues for binding, post-receptor signalling and mitogenic effects in mouse embryonic fibroblasts expressing only the human IR-A, the human IR-B or the human IGF1R.

In our laboratory, we have developed three bioassays, specific for the human IR-A, the human IR-B and the human IGF1R, which quantify ligand-stimulated phosphorylation of tyrosine residues within the specific receptors (Brugts et al. 2008, Varewijck et al. 2010). These assays use human embryonal kidney (HEK) cells which are stably transfected with cDNA of either the human IR-A, the human IR-B or the human IGF1R. The endpoint signal of the assays is very specific in that only the initial activation step of a particular receptor (i.e. tyrosine-phosphorylation) after stimulation with an insulin analogue is used to quantify receptor-mediated signalling. By using the IGF1R-specific bioassay, we previously confirmed that in vitro, at high concentrations, insulin glargine is more potent than human insulin, insulin detemir and insulin NPH in activating the IGF1R (Varewijck et al. 2010, 2012). However, since insulin glargine is metabolised after s.c. injection, we recently studied whether differences in IGF1R activation in vitro

<table>
<thead>
<tr>
<th>Analogue</th>
<th>Metabolic potency (%)</th>
<th>Mitogenic potency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human insulin</td>
<td>100a 100b</td>
<td>100a 100b 100c</td>
</tr>
<tr>
<td>X10</td>
<td>207a 145b</td>
<td>975a 806b 340c</td>
</tr>
<tr>
<td>Aspart</td>
<td>101a ND</td>
<td>58a ND ND</td>
</tr>
<tr>
<td>Lispro</td>
<td>82a ND</td>
<td>66a ND ND</td>
</tr>
<tr>
<td>Glargine</td>
<td>60a 68b</td>
<td>783a 760b ND</td>
</tr>
<tr>
<td>Glargine M1</td>
<td>ND 32b</td>
<td>ND 75b ND</td>
</tr>
<tr>
<td>Glargine M2</td>
<td>ND 52b</td>
<td>ND 68b ND</td>
</tr>
<tr>
<td>A21Gly</td>
<td>88a ND</td>
<td>34a ND ND</td>
</tr>
<tr>
<td>B31B32diArg</td>
<td>75a ND</td>
<td>2180a ND ND</td>
</tr>
<tr>
<td>Detemir</td>
<td>27a ND</td>
<td>11a ND ND</td>
</tr>
<tr>
<td>Glulisine</td>
<td>ND ND</td>
<td>ND ND ND</td>
</tr>
<tr>
<td>IGF1</td>
<td>ND 0.02b</td>
<td>ND 5568b 5700c</td>
</tr>
</tbody>
</table>

All values relative to human insulin. ND, not determined.

Data from Kurtzhals et al. (2000).

Data from Sommerfeld et al. (2010).

Data from Slieker et al. (1997).

Comparable to human insulin. Data from Stammberger et al. (2006).

Table 3 In vitro metabolic potency and mitogenic potency of commercially available insulin analogues

<table>
<thead>
<tr>
<th>Analogue</th>
<th>IR-A (%)</th>
<th>IR-B (%)</th>
<th>IGF1R (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human insulin</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>X10</td>
<td>73</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>Aspart</td>
<td>134</td>
<td>100</td>
<td>64</td>
</tr>
<tr>
<td>Lispro</td>
<td>112</td>
<td>89</td>
<td>91</td>
</tr>
<tr>
<td>Glargine</td>
<td>97</td>
<td>75</td>
<td>91</td>
</tr>
<tr>
<td>Detemir</td>
<td>127</td>
<td>94</td>
<td>91</td>
</tr>
<tr>
<td>Glulisine</td>
<td>103</td>
<td>94</td>
<td>82</td>
</tr>
<tr>
<td>IGF1</td>
<td>89</td>
<td>8.3</td>
<td>509</td>
</tr>
</tbody>
</table>

All values relative to human insulin. Data from Sciacca et al. (2010).

Table 4 In vitro anchorage-independent cell growth (in terms of colony formation) in engineered cells expressing only one receptor type

www.endocrinology-journals.org
Given our findings and the affinity of insulin and insulin analogues to the IGF1R, it is unlikely that mitogenic responses to insulin and insulin analogues in vivo are exclusively mediated by the IGF1R. Currently, the possibility is discussed whether insulin and insulin analogues may increase the proliferation rate of already pre-existing subclinical tumours. These already transformed cells could be more sensitive to insulin and insulin analogues due to changes in receptor expression and/or distribution (i.e. the proportion between IRs and IGF1R). The higher responses after stimulation with insulin glargine in cells in vitro with an increased IGF1R expression, as shown in Table 5, are also in accordance with this latter possibility.

Moreover, recent data have elucidated some other molecular mechanisms by which insulin (or insulin analogues)-mediated stimulation of IRs may play a key role in the progression of human cancer (Frasca et al. 2008). IRs, like IGF1Rs, are overexpressed in many human malignancies (Frasca et al. 2008). Interestingly, especially the IR-A isofom is overexpressed in cancer and has the peculiar characteristic to bind not only insulin but also IGF2; and IGF1 as well, but to a lesser extent (Denley et al. 2004, Belfiore et al. 2009). In addition, as previously discussed, IRs contribute to the formation of hybrid receptors together with IGF1Rs. By binding to these hybrid receptors, insulin and insulin analogues may stimulate specific IGF1R signalling pathways (Belfiore et al. 2009). Over-expression of IR-A may play a key role in the development and progression of human cancers after starting treatment with insulin or insulin analogues.

When IRs are activated, they activate at least two different downstream signalling pathways, one involving MAP kinases and the other involving PI3 kinase (Belfiore et al. 2009; Fig. 3). Another pathway is the direct translocation of insulin (and insulin analogues?) and IRs to the cellular nucleus (Podlecki et al. 1987, Harada et al. 1999). Recently, it was reported that after stimulation, the IRs together with components of the MAP kinase signalling cascade were translocated into the nucleus, finally leading to the direct induction of transcription of two important insulin target genes (early growth response 1 and glucokinase; Nelson et al. 2011). Further studies will be required to reveal which signalling pathways are actually involved in the different effects of insulin and insulin analogues and whether in this respect (some) insulin analogues differ from human insulin.

In conclusion, the introduction of insulin and insulin analogues has rendered diabetes as a chronic disease with potentially serious long-term complications. Beside metabolic actions, insulin and insulin analogues translate into different effects on IGF1 bioactivity in patients in vivo (Varewijck et al. 2012). We compared serum IGF1 bioactivity in participants of the Lanmet Study (Yki-Jarvinen et al. 2006), who were insulin-naive type 2 diabetic patients treated with either high doses of insulin glargine or NPH insulin for 36 weeks. At baseline and after 36 weeks of insulin therapy, there was no difference in IGF1 bioactivity between the treatment groups. Moreover, circulating IGF1 bioactivity decreased significantly during insulin therapy, whereas (immunoreactive) serum total IGF1 concentrations remained unchanged. The data in our study do not support the idea that treatment with insulin glargine in type 2 diabetes leads to a stronger stimulation of the IGF1R than NPH insulin. Our findings are in line with a recently published paper in which, in an animal model of type 2 diabetes, no differences were demonstrated in the degree of colonic epithelial proliferation between animals treated with insulin glargine or NPH insulin (Nagel et al. 2010). Nevertheless, in that study, insulin treatment did result in a higher degree of colonic epithelial proliferation, thereby pointing towards the potential mitogenic properties of insulins, irrespective of the type of insulin (Nagel et al. 2010). However, it is important to underline once again that increased mitogenicity does not necessarily lead to increased carcinogenicity.

Table 5 Receptor expression in experimental cell lines and observed response after stimulation with insulin glargine (modified from Hansen (2008))

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>IGF1 receptor/insulin receptor ratio</th>
<th>IGF1 receptor affinity</th>
<th>mitogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SaosB10a</td>
<td>Predominantly IGF1 receptor</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>HMECb</td>
<td>Predominantly IGF1 receptor</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Rat-1 over expressing IRc</td>
<td>Predominantly IGF1 receptor</td>
<td>ND</td>
<td>←</td>
</tr>
<tr>
<td>MCF-7 cellsd</td>
<td>4:1</td>
<td>ND</td>
<td>←</td>
</tr>
<tr>
<td>MCF-10d</td>
<td>1:1</td>
<td>ND</td>
<td>←</td>
</tr>
<tr>
<td>MCF-7-cellsg</td>
<td>7:1</td>
<td>ND</td>
<td>←</td>
</tr>
<tr>
<td>SKBR-3 cellsg</td>
<td>1:1</td>
<td>ND</td>
<td>←</td>
</tr>
</tbody>
</table>

ND, not determined.

[a] Data from Kurtzhals et al. (2000).
[b] Data from Kohn et al. (2007).
[c] Data from Berti et al. (1998).
[d] Data from Staiger et al. (2007).
[e] Data from Liefvendahl & Arnqvist (2008).
may induce mitogenic effects and thereby change the risk on malignancies. Although it has been suggested that especially insulin analogues with an increased affinity for the IGF1R (such as insulin glargine) are more mitogenic when tested in vitro in cells expressing a high proportion of IGF1R, the question remains whether this has any clinical implications. In addition, recent data suggest that insulin (or insulin analogues)-mediated stimulation of IRs may play a key role in the progression of human cancer.

More detailed information is required to elucidate the exact mechanisms as to how insulin and insulin analogues may activate the IR and IGF1R and how this activation is linked to mitogenesis and metabolism.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

J A M J L Janssen received an unrestricted grant from Novo Nordisk A/S (Alphen aan de Rijn, The Netherlands) and Sanofi-aventis (Frankfurt am Main, Germany).

Acknowledgements

The authors would like to thank Michael P Brugts for kindly providing them Figures 2 and 3 for this review.

References

Denley A, Bonython ER, Booker GW, Cosgrove LJ, Forbes BE, Ward CW & Wallace JC 2004 Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Molecular Endocrinology 18 2502–2512. (doi:10.1210/me.2004-0183)

Received in final form 9 March 2012
Accepted 12 March 2012
Made available online as an Accepted Preprint 14 March 2012