Embryonic epithelial *Pten* deletion through *Nkx2.1-cre* leads to thyroid tumorigenesis in a strain-dependent manner

Caterina Tiozzo¹²³, Soula Danopoulos¹, Maria Lavarreda-Pearce¹, Sheryl Baptista¹, Radka Varimezova¹, Denise Al Alam¹, David Warburton¹, Virender Rehan⁴, Stijn De Langhe⁵, Antonio Di Cristofano⁶, Saverio Bellusci⁷ and Parviz Minoo¹²

¹Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California 90027, USA
²Department of Pediatrics, University of Southern California, Los Angeles, California 90027, USA
³Department of Pediatrics, Nassau University Medical Center, 201 Hempstead Turnpike, East Meadow, New York 11554, USA
⁴Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
⁵Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
⁶Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
⁷Department of Internal Medicine II, Excellence Cluster Cardio Pulmonary System, University of Giessen Lung Center, Klinikstrasse 36, Aulweg 130, 35392 Giessen, Germany

The authors and journal apologize for an error in the above paper, which appeared in volume 19 part 2, pages 111–122. In the author list, the first name and last name of Virender Rehan were transposed, and should have read as follows:

Caterina Tiozzo, Soula Danopoulos, Maria Lavarreda-Pearce, Sheryl Baptista, Radka Varimezova, Denise Al Alam, David Warburton, Virender Rehan, Stijn De Langhe, Antonio Di Cristofano, Saverio Bellusci, and Parviz Minoo

2012 Embryonic epithelial *Pten* deletion through *Nkx2.1-cre* leads to thyroid tumorigenesis in a strain-dependent manner. *Endocrine-Related Cancer* 19 111–122 (doi: 10.1530/ERC-10-0327).