Abstract

Increased p21-activated kinase (PAK) signaling and expression have been identified in the invasive fronts of aggressive papillary thyroid cancers (PTCs), including those with RET/PTC, BRAFV600E, and mutant RAS expression. Functionally, thyroid cancer cell motility in vitro is dependent on group 1 PAKs, particularly PAK1. In this study, we hypothesize that BRAF, a central kinase in PTC tumorigenesis and invasion, regulates thyroid cancer cell motility in part through PAK activation. Using three well-characterized human thyroid cancer cell lines, we demonstrated in all cell lines that BRAF knockdown reduced PAK phosphorylation of direct downstream targets. In contrast, inhibition of MEK activity either pharmacologically or with siRNA did not reduce PAK activity, indicating MEK is dispensable for PAK activity. Inhibition of cell migration through BRAF loss is rescued by overexpression of either constitutive active MEK1 or PAK1, demonstrating that both signaling pathways are involved in BRAF-regulated cell motility. To further characterize BRAF–PAK signaling, immuno-fluorescence and immunoprecipitation demonstrated that both exogenously overexpressed and endogenous PAK1 and BRAF co-localize and physically interact, and that this interaction was enhanced in mitosis. Finally, we demonstrated that acute induction of BRAFV600E expression in vivo in murine thyroid glands results in increased PAK expression and activity confirming a positive signaling relationship in vivo. In conclusion, we have identified a signaling pathway in thyroid cancer cells which BRAF activates and physically interacts with PAK and regulates cell motility.
PTC tumorigenesis is driven largely by activation of the MAP kinase pathway through several genetic events, the most common of which are activating mutations in BRAF (most frequently BRAFV600E), RAS isoforms, or gene rearrangements involving the RET tyrosine kinase (Fagin & Mitsiades 2008, Nucera et al. 2011). Whether activated by WT BRAF signaling through RAF homodimers or heterodimers, or by monomeric signaling from constitutively activated (CA) BRAFV600E, activated MEK leads to a downstream cascade of signaling events resulting in increased proliferation, invasiveness, reduced apoptosis, and reduced tissue-specific function (Knauf et al. 2005, Melillo et al. 2005, Riesco-Eizaguirre et al. 2009). BRAFV600E has been particularly well studied in PTC. Expression of BRAFV600E in the mouse causes thyroid cancer and thyroid cell dedifferentiation in vivo (Knauf et al. 2005, 2011) and occurs in ~40% of all human PTC samples, although this prevalence varies depending on geographic location and ethnicity. BRAFV600E in PTC is associated with more aggressive clinical behavior (Xing 2007, Xing et al. 2013), and recent data suggests that other genetic abnormalities, such as mutations in the hTERT promoter and thyroid cell dedifferentiation activates BRAFV600E resulting in more aggressive tumor behavior (Landa et al. 2013, Liu et al. 2014). The frequency of BRAFV600E is also reported to be high in tumors from patients with progressive PTC enrolled in clinical trials (Kloos et al. 2009). For these reasons, there have been major efforts to evaluate the efficacy of inhibiting BRAF and/or MEK in thyroid and other BRAF-mediated cancers. This has resulted in FDA-approval of compounds targeting either all RAF isoforms or BRAFV600E specifically. However, these treatments are not curative and acquired resistance is nearly universal. Strategies to increase the effectiveness of BRAF-targeted compounds and to alleviate mechanisms of acquired resistance are being studied.

As gross tumor invasion predicts poor prognosis in thyroid cancer, we evaluated expression profiles of the invasive fronts of large invasive PTCs to identify potential therapeutic targets. This work demonstrated that PTC invasion was associated with signaling leading to epithelial-to-mesenchymal transition (Vasko et al. 2007). The studies implicated known thyroid cancer pathways such as PI3K and transforming growth factor beta (TGFβ) signaling cascades in the invasive fronts, but also suggested a previously undefined role for p21-activated kinases (PAKs). Subsequently, we confirmed that PAK expression and phosphorylation were increased in the invasive fronts of aggressive PTCs and occurred in tumors with MAPK-activating genetic alterations. We further demonstrated that inhibition of group 1 PAKs (PAK1 in particular) reduced motility in six different human thyroid cancer cell lines (McCarty et al. 2010).

PAKs are a family of serine/threonine kinases that phosphorylate downstream targets that alter cell motility by regulating cytoskeletal proteins involved in promoting lamellopod extension, enhancing proliferation, and inhibiting apoptosis (Radu et al. 2014). PAKs play important roles in breast cancer development and progression (Shrestha et al. 2012, Rider et al. 2013), in schwannoma development as effectors of NF2 (Flaiz et al. 2009) and in neurological syndromes (Ma et al. 2012). The six isoforms of PAK are divided into group 1 (PAKs 1–3) and group 2 (PAKs 4–6) based on structural and functional similarities (Radu et al. 2014). RAC1 and CDC42 are the primary activators of group 1 PAKs (Radu et al. 2014) that normally exist as inactive homodimers through the binding of the auto inhibitory domain of one kinase to the kinase domain of another (Whale et al. 2011). When RAC1 and CDC42 bind to PAK, the homodimer relaxes allowing for activation (Lei et al. 2005). Once activated, PAKs phosphorylate downstream effectors including vimentin, CRAF, ROCK, and many others (Radu et al. 2014).

The relationship between PAK and RAF/MEK signaling is complex. PAK is known to phosphorylate CRAF and MEK-enhancing activation, suggesting a potentiating role for PAK in RAF and MEK signaling (Slack-Davis et al. 2003, Wang et al. 2013, Radu et al. 2014). In addition to their kinase activity, group 1 PAKs have a kinase-independent scaffold function that sequesters CRAF and MEK1 at the plasma membrane enhancing signaling (Wang et al. 2013). Similar scaffolding functions allow PAK1 to promote AKT signaling (Higuchi et al. 2008). PAK1 coordinately activates MET and MAPK signaling in breast cancer cells and PAK1 amplification has been proposed to be an alternative pathway for MAPK activation in this tissue type (Shrestha et al. 2012). It is of interest that in melanoma tissue microarrays (presumably from central tumor cores), PAK1 expression levels are lower in BRAFV600E-positive tumors vs WT tumors (Ong et al. 2011). Concordantly, PAK1 mediates MAPK activation in melanoma cells with WT BRAF more so than in those homozygous for BRAFV600E through phosphorylation of CRAF and MEK (Ong et al. 2011). However, a role for BRAF beyond kinase inhibition (i.e. through scaffolding or other mechanisms) or the mechanism for its regulation of PAK function has not been reported. In addition, the regulation of PAK by MAPK signaling proteins has not yet been reported in thyroid cancer cells that have unique resistance mechanisms to BRAF inhibitors (Montero-Conde et al. 2013).
In this study, we demonstrate in thyroid cancer cells that PAK activity is dependent on BRAF expression. We also demonstrate that MEK does not regulate PAK signaling and report the new observation that BRAF and PAK physically interact. Interestingly, the endogenous BRAF–PAK1 interaction appears to be enhanced in mitosis. Finally, in vivo acute overexpression of BRAFV600E results in increased PAK expression and activity in addition to ERK phosphorylation. These data together are consistent with the conclusion that PAK is a MEK-independent functional downstream effector of BRAF that may play a role in thyroid tumorigenesis and progression.

Materials and methods

Cell culture

Human thyroid carcinoma BCPAP, TPC1, and FTC133 cell lines (heterozygous for BRAFV600E; express RET/PTC1, or are BRAF WT respectively) were the generous gifts of Drs R Schweppe (University of Colorado Denver) (Schweppe et al. 2008) with permission from the researchers who originally established cell lines: FTC133 – P Goretzki, University of Leipzig, Germany (Goretzki et al. 1990); BCPAP – D N Fabien, Centre Hospitalier Lyon-Sud, France (Fabien et al. 1994); and TPC1 – H Sato, Kanazawa University, Japan (Kurebayashi et al. 2000). The obtained cell lines were independently confirmed to be of thyroid origin by DNA fingerprinting using methods as previously described (Schweppe et al. 2008). The cells were cultured as described (McCarty et al. 2010). Human embryonic kidney (HEK) 293 cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and grown in conditions described (Ding et al. 2013).

Cell synchronization

TPC1 cells maintained at low confluency were treated with 2 mM of thymidine in DMEM with 10% FBS for 24 h, released for 2 h, and treated with 100 ng/ml of nocodazole in DMEM with 10% FBS for 24 h. TPC1 cells were released for 1 h and protein was isolated using the method described below.

cDNA constructs

Vectors containing the cDNAs encoding CA PAK1 and GFP-tagged PAK autoinhibitory domain (PID) were the generous gifts of J Chernoff (Fox Chase Cancer Center) (Beeser & Chernoff 2005). The vector containing the cDNA for murine CA MEK1 was a gift from M Ostrowski (The Ohio State University, Columbus OH, USA; Huang & Erikson 1994). The vector containing the cDNA for MYC-tagged BRAF was a gift from Dr James Fagin (Memorial Sloan-Kettering Cancer Center, New York, NY, USA). The FLAG–PAK1 vector was constructed by excising cDNA from a WT PAK1 vector using BamHI and HindIII. The fragment underwent PCR to add a FLAG-tag and was then inserted into the pCMV-Tag2B vector.

Transient transfections

CA PAK1 cDNA, CA MEK1 cDNA, PID cDNA, and BRAF siRNA combinations were transfected into BCPAP, TPC1, and FTC133 cells using OptiFect Reagent (Life Technologies Co.; McCarty et al. 2010). HEK293 cells were transfected with MYC-tagged BRAF, FLAG-tagged PAK1, and HA control using Lipofectamine Plus (Life Technologies Co.) as previously described (Porchia et al. 2007).

siRNA transfections

BCPAP, TPC1, and FTC133 cells were grown to 30–40% confluence and transfected with scrambled siRNA control (cat no. sc-37007, Santa Cruz Biotechnology, Inc.), BRAF-specific siRNAs (cat no. sc-36368, Santa Cruz Biotechnology, Inc.), PAK1-specific siRNAs (cat no. sc-29700, Santa Cruz Biotechnology, Inc.), MEK1-specific siRNAs (cat no. sc-29396, Santa Cruz Biotechnology, Inc.), or MEK2 (cat no. sc-35905, Santa Cruz Biotechnology, Inc.) using Lipofectamine 2000 (Life Technologies Co.) as previously described (McCarty et al. 2010).

U0126 treatment

BCPAP, TPC1, and FTC133 cells were grown to 50% confluence and treated with U0126 (Cell Signaling Technology, Danvers, MA, USA) at various concentrations for 24 h (0–10 μM). For migration experiments involving U0126, the cells were seeded, allowed to settle for 1 h, and incubated with U0126 or DMSO (2 μM) for 2 h before being exposed to a serum gradient.

Protein isolation and western blotting

Protein was isolated using either M-PER or lysis buffer and then Western blot was performed as previously described (Ringel et al. 2001, Vasko et al. 2007). Primary antibodies against PAK1, phospho-Thr423 PAK1/Thr402 PAK2, cRAF, phospho-Ser338 cRAF, MEK1/2, phospho-Ser217...
MEK1/Ser221MEK2, phospho-Ser298 MEK1, LIMK1, LIMK2, phospho-Thr508 LIMK1/Thr505LIMK2, ERK1/2, phospho-Thr202 ERK1/Thr204 ERK2, MYC-TAG, and GAPDH were from Cell Signaling Technology and antibodies against BRAF and GFP were from Santa Cruz Biotechnology, Inc. The antibody against vimentin and phospho-Ser55 vimentin were from Sigma–Aldrich, Inc. and MBL Co. (Nagoya, Japan) respectively.

Migration assay

Migration assays were performed on BCPAP, FTC133, and TPC1 cells as previously described (McCarty et al. 2010).

Cell viability analysis

The effect of transfection and U0126 treatment on cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay as previously described (Porchia et al. 2007).

Immunofluorescence and confocal microscopy

HEK293 cells were grown on glass cover slips in six-well dishes, transfected, fixed with 4% paraformaldehyde (Affymetric, Cleveland, OH, USA), permeabilized with 0.1% Triton X-100, and incubated for 15 min in Vectastain (Vector Laboratories, Inc., Burlingame, CA, USA) blocking solution. Primary rabbit FLAG-Tag and mouse BRAF antibodies were applied overnight at 4°C. After washing twice with PBS, the cells were incubated with Alexa Fluor 488 and Alexa Fluor 594 secondary antibodies in PBS for 1 h in the dark. The cover slips were mounted onto the slides with Slow Fade Antifade reagent with DAPI (Life Technology) and FTC133 cells underwent the same process except they were not transfected and were seeded in a Labteck Chamber slide (Sigma). Primary antibodies against PAK1 and phospho-Thr423 PAK1/Thr402 PAK2 (#2601) were used.

Immunoprecipitation

200–400 µg total protein were incubated with pre-conjugated EZview Red anti-FLAG M2 affinity gel (Sigma), EZview Red anti-c-MYC affinity gel (Sigma), EZview Red anti-HA affinity gel (Sigma), non-conjugated anti-PAK1 antibody from Cell Signaling Technology, or non-conjugated anti-BRAF antibody from Santa Cruz Biotechnology, Inc. overnight at 4°C. For the PAK1 and BRAF immunoprecipitation (IP), 1/10 volume of protein G agarose beads was added for 2 h to eliminate non-specific binding. The beads were centrifuged and the supernatant was collected for IP. The same amount of protein G agarose beads was used as for the IP. Both mixtures were centrifuged and the pellets were washed with M-PER buffer three times. Loading buffer for Western blot (one volume of dye and three volumes of distilled water) was added and the mixtures were boiled to release the bound proteins and western blotting analysis was performed. For experiments using preconjugated beads, control experiments were included, in which preconjugated anti-hemaglutinin antibody beads was used for IP; for non-preconjugated bead experiments, IgG precipitation was used as the negative control.

Immunohistochemical staining and western blotting of mouse thyroid tissue

Paraffin blocks from the thyroid glands of mice with thyroid-specific, doxycycline-inducible BRAFV600E (iBRAFV600E) following 1 week of induction and WT control littermates were the generous gifts of J Fagin (Memorial Sloan Kettering Cancer Center, NY, USA; Chakravarty et al. 2011). The blocks were cut into sections, which were placed on slides and soaked in xylene followed by 100 and 95% ethanol. Endogenous peroxidase was quenched using 3% peroxidase. The slides were prepared by heating in Antigen Unmasking Solution for 7 min (Vector Laboratories, Inc.). For blocking and primary antibody staining, immunostaining racks and cover plates (Thermo Scientific, Inc., Pittsburg, PA, USA) were used. The primary antibodies against Thr423 pPAK, PAK1, PAK2, and PAK3 were diluted, 1:100, in PBS and incubated on the slides overnight at 4°C. After the primary antibody, the slides were treated with a secondary antibody followed by streptavidin/peroxidase preformed complex solution and a DAB Substrate Mixture (Vector Laboratories, Inc.). They were then immersed in hematoxylin for 30 s and coverslips were mounted using 30% glycerol. Negative controls were slides that underwent the same process without the primary antibody. Immunohistochemistry (IHC) was scored based on the number of positive cells and the intensity of the immune activity independently by three investigators (S K McCarty, M Saji and V Vasko) on a 0–2 scale. Scoring was compared and averages were calculated.

For western blotting analysis, we also isolated mouse thyroid tissues from iBRAFV600E mice as well as age matched WT and rtTA-expressing control mice after...
1 week treatment with doxycycline-impregnated food pellets (2500 p.p.m.) as previously described (Chakravarty et al. 2011). The thyroid tissue was homogenized in M-PER buffer and protein was isolated from individually treated iBRAFV600E mice. For the treated WT and rTAT control mice, pooled thyroid gland tissue from each genotype group (due to the small thyroid size) was homogenized with M-PER buffer and protein was isolated. The proteins were concentrated using Amicon Ultra-0.5 Centrifugal Filter Devices (EMD Millipore Co., Billerica, MA, USA), concentrations were measured as above, and western blotting analyses were carried out. The mouse studies were approved by the Institutional Animal Care and Use Committee.

Statistical analyses

For cell migration studies, to investigate whether inhibition of BRAF and MEK1/2 (compared to control) would affect cell migration, linear mixed models were used to account for the correlation among observations from the same experiment. For the MTT assays, the data were first log-transformed to reduce variance. For the migration rescue experiments, linear mixed models with an interaction effect were used to analyze whether introducing either CA PAK1 or CA MEK1 into BRAF siRNA transfected cells rescued the effect of decreased migration caused by the BRAF siRNA. As a secondary analysis, an interaction between the interaction term and cell lines was used to test whether the rescue effect differed between cell lines. All analyses were performed using SAS/STAT Software version 9.2 (SAS Institute, Inc., Cary, NC, USA). To quantify the co-localization of BRAF with PAK1 and pPAK, the confocal images were analyzed using Pearson’s coefficient of correlation (r). A coefficient of 1 or −1 implies perfect positive or negative correlation, while 0 implies none. The Pearson’s coefficient can then be converted into a percentage that represents the amount of overlap or co-localization. Complete details of the methods and mathematics are as reported previously (Zinchuk et al. 2007, French et al. 2008).

Results

PAK function is regulated by BRAF

To determine whether PAK function is dependent on BRAF expression, BRAF or control siRNA was transfected into the human thyroid cancer cell lines BCPAP, TPC1, and FTC133 that harbor different thyroid cancer-causing genetic mutations (see ‘Materials and methods’ section). Western blotting analysis was carried out using specific antibodies for known PAK phosphorylation sites on vimentin (Ser56) and MEK (Ser298). In all cases, partial BRAF suppression was sufficient to reduce PAK-mediated phosphorylation of downstream targets as well as BRAF-mediated MEK phosphorylation (Fig. 1A). In contrast, when group 1 PAK activity was specifically suppressed using exogenous PAK autoinhibitory domain (PID), no effect was observed on BRAF-mediated MEK phosphorylation despite reductions in PAK-mediated phosphorylation (Fig. 1B).

BRAF-regulated thyroid cancer cell motility is dependent on MEK and PAK1

Both BRAF and PAKs regulate cancer cell motility (McCarty et al. 2010, Arozarena et al. 2011, Makrodouli et al. 2011). BRAF siRNA blocked serum gradient-induced BCPAP, TPC1, and FTC133 thyroid cancer cell migration compared with the scrambled control in all three-cell lines (Fig. 2A). To ensure that BRAF suppression had a lesser effect on cell viability in the low confluency conditions.
Endocrine-Related Cancer

effects on cell viability in the conditions used for the assays confirmed that the transfections had minimal effects and showed no significant effects (Fig. 2B). To employed in the migration assays, MTT assays were performed and showed no significant effects (Fig. 2B). To determine whether PAK1 played a role in BRAF-regulated thyroid cell migration induced by a strong serum gradient, rescue experiments were performed in all three-cell lines. CA PAK1, when expressed in BRAF siRNA-transfected thyroid cancer cells, resulted in a statistically significant rescue of migration (Fig. 2C). This effect was consistent for all three-cell lines tested when analyzed using a linear mixed statistical model. Western blotting confirmed CA PAK1 expression and BRAF knockdown (Fig. 2D). MTT assays confirmed that the transfections had minimal effects on cell viability in the conditions used for the experiments (data not shown). Similar rescue experiments using CA MEK1 demonstrated that CA MEK1 also rescued the effect of BRAF siRNA on migration, and that the rescue was consistent for all three-cell lines. A similar mixed model with an interaction effect was used as for the CA PAK1 rescue experiment (Fig. 2E). The western blotting analysis confirmed CA MEK1 expression and a partial BRAF knockdown (Fig. 2F) and MTT assays confirmed that the transfections only minimally altered cell viability in the same experimental conditions (data not shown).

MEK and group 1 PAK Pathways do not synergistically regulate migration

MEK and group 1 PAKs were inhibited using U0126, a specific MEK1/2 inhibitor (2 μM) or PID transfection respectively in each cell line, and migration experiments were performed. The inhibition using either U0126 or PID alone significantly reduced migration compared with the appropriate control. Inhibition of both MEK and group 1 PAKs simultaneously, however, did not result in a greater decrease in migration. These results suggest that either the two pathways are not synergistic or that they are maximally individually inhibited (Fig. 3A). The western blotting analysis confirmed a U0126-induced decrease in MEK activity, indicated by a decrease in pERK1/2 and expression of GFP-tagged PID or GFP control vector (Fig. 3B).

MEK inhibition does not alter PAK activity

Because MEK is a downstream target of BRAF that is functionally interactive with PAK (Slack-Davis et al. 2003), we performed experiments to determine whether MEK regulated PAK activity in thyroid cancer cells. MEK kinase activity was first inhibited using U0126 at increasing concentrations in BCPAP, TPC1, and FTC133 cells. U0126 did not reduce the levels of phosphorylated PAK or PAK-mediated phosphorylated vimentin (Fig. 4A). Treatment with U0126 at a dose (2.0 μM) in which MEK inhibition is near-complete (Fig. 4A) results in significantly reduced thyroid cancer cell motility (Fig. 4B) without reducing cell viability (Fig. 4C). This result is consistent with PAK-independent motility inhibition. We also knocked down MEK1 and MEK2 using siRNA and confirmed that loss of MEK expression does not alter PAK activity (Fig. 4D).

Exogenous BRAF and PAK1 co-localize and co-IP

To further characterize the BRAF–PAK interaction, we carried out experiments to determine if BRAF and PAK
co-localize and/or physically interact. Epitope tagged MYC–BRAF and FLAG–PAK1 were transfected into HEK293 cells and IP was performed using pre-conjugated FLAG, MYC, and HA (control for non-specific binding) beads. The western blotting analysis of the precipitated proteins demonstrated that BRAF and PAK1 co-IP in both directions; no non-specific pull-down was identified from the IP using pre-conjugated HA beads. The western blotting analysis of the precipitated FLAG, MYC, and HA (control for non-specific binding) demonstrated that endogenous BRAF and PAK1 co-IP in both directions in these conditions, although it required large amounts of protein and the interaction was more strongly detected when the IP was performed using the PKA antibody (Fig. 6D).

BRAFV600E expression in murine thyroids increases PAK isoform phosphorylation, activity, and expression

To study the signaling effects of acute activation of BRAF on group 1 PAKs in vivo, we obtained paraffin blocks from the thyroid glands of mice with thyroid-specific, doxycycline-inducible BRAFV600E following 1 week of BRAFV600E overexpression that causes the development of PTC (Chakravarty et al. 2011). Compared with littermate controls, the thyroid glands from mice with induced BRAFV600E show an increase in immunohistochemistry staining and allow for quantitation, Western blot was performed on protein isolated from the mouse thyroid glands following BRAFV600E induction and after doxycycline treatment of age-matched control WT mice and mice expressing the Tg-rTTA activator.
In comparison to both controls, the mice with induced BRAFV600E had an increase in immunoactive pPAK Thr423 and pPAK Ser144, p-vimentin Ser56, and pERK consistent with activation of both PAK and MEK pathways (Fig. 7B). Interestingly, PAKs 1 and 2, and vimentin protein levels also were increased. These data suggest that acute activation of BRAF, or BRAFV600E, specifically increases both expression and signaling activation of PAK in vivo. This is consistent with our previously reported data from the invasive fronts of human PTC samples (McCarty et al. 2010).

Discussion

In the present study, we report a functional interaction between BRAF, a critical oncogene in thyroid cancer, and PAK, a key regulator of cell motility and tumorigenesis.
Loss of BRAF expression in thyroid cancer cells results in reduced PAK function in vitro and BRAFV600E induction in thyroid cells in vivo leads to PAK overexpression and activation. The data further demonstrate that PAK is not regulated by MEK in thyroid cancer cells, suggesting a MEK-independent BRAF–PAK signaling connection. Finally, we demonstrate that BRAF and PAK1 physically interact in both exogenous expression and endogenous systems. Interestingly, the physical interaction between endogenous WT BRAF and PAK1 appears to be most detectable in mitosis, although the precise nature of the interaction and whether it occurs as part of a larger protein complex requires further study. Recent data support the assertion of a role for PAK in MAP kinase pathway-mediated tumor formation in vitro and in vivo. It was recently demonstrated that Pak1−/− and Pak1+/− mice are relatively resistant to RAS-driven squamous cell carcinomas (Chow et al. 2012). PAK1 has been shown to...
be particularly critical for MAPK activation in BRAF WT melanoma and in breast cancer by linking MET activation to MAPK signaling (Ong et al. 2011, Shrestha et al. 2012). This has been shown to be related to PAK-mediated phosphorylation of CRAF. In thyroid cells, even in the absence of an activating mutation, BRAF is the dominant RAF isoform mediating upstream-activated oncopgenic pathways (Mitsutake et al. 2006).

In all three tested thyroid cancer cell lines, two with WT BRAF (TPC1 and FTC133) and one heterozygous for the BRAFV600E mutation (BCPAP), BRAF suppression reduced PAK activity. The interaction between WT BRAF and PAK was then further explored in the co-IP and IF studies, in which interaction of the proteins was observed. The mice with acute overexpression of BRAFV600E in the thyroid display both increased expression of PAK1 and PAK2 and phosphorylation (Fig. 7B). This model is one of acute activation and overexpression and is a robust system to study acute signaling effects. Experiments in mice that stably express a single copy of BRAFV600E in the thyroid glands are ongoing. Further experiments are required to determine if the components of the BRAF/PAK protein complex, and the mechanism of BRAF-regulated PAK activity differ for BRAFV600E vs WT BRAF.

It is of interest that in human melanoma cells, the absence of BRAFV600E mutation is reported to be associated with increased PAK signaling through CRAF and to predict response to PAK inhibition (Ong et al. 2011). Moreover, in melanoma cells, the BRAFV600E-specific kinase inhibitor vemurafenib did not inhibit PAK phosphorylation of MEK in cells homozygous for BRAFV600E, suggesting that mutant BRAF may not signal through PAK as efficiently in these cells (Ong et al. 2011). However, to our knowledge, the role of WT BRAF on PAK activity or of BRAFV600E beyond pharmacological kinase inhibition has not yet been reported in melanoma. In the present study, thyroid cancer cells with WT BRAF or that are heterozygous for BRAFV600E demonstrate BRAF expression-dependent PAK activation. The difference between the two sets of results may be due to the loss of both kinase and scaffold functions in the knockdown model, the presence of WT BRAF in the thyroid systems, and/or cell autonomous differences in response to BRAF inhibitors (as has been previously described (Montero-Conde et al. 2013)). Interestingly, it has been reported recently that melanoma cells heterozygous for BRAFV600E display different responses to vemurafenib compared with cells that are homozygous for the mutant allele (Sapkota et al. 2013).

It also is important to recognize the centrality of BRAF activity in PTC tumorigenesis in the setting of activated WT BRAF (via RAS mutations and RET/PTC rearrangements for example) or through activating BRAF mutations. This is supported by the relative mutual exclusivity of these oncogenes and the importance of BRAF signaling for their oncogenic functions (Melillo et al. 2005). As the activation of PAK is known to be enhanced at the invasive fronts of tumors (Vasko & Saji 2007), it is possible that PAK signaling plays a role in the progression of MAPK-activated PTCs in general, but the mechanisms may vary dependent on the mode of pathway activation.

While the co-IP and co-localization experiments indicate that BRAF and PAK1 physically interact, the precise nature or requirements for this interaction have not yet been elucidated. It seems likely that both proteins are part of a larger complex because BRAF signaling is facilitated through kinase suppressor of RAS 1 (KSR1) and other scaffold proteins (McKay et al. 2009). Further evidence that strengthens this possibility is that scans using STRING v9.1 (Franceschini et al. 2013) of both BRAF and PAK1 do not predict direct binding sites. Of interest are recent data demonstrating that PAK can function as a scaffold by binding signaling proteins.
molecules to its N-terminus domain. Specifically, PAK1 was shown to directly bind to both PDK1 and AKT, and to facilitate AKT membrane recruitment and PDK1 phosphorylation (Higuchi et al. 2008). In addition, PAK scaffolding has been reported to facilitate CRAF–MEK1 signaling (Wang et al. 2013). In the present study, the inhibitor PID did not reduce the levels of pERK. This was unexpected and suggests either cell type or condition-specific differences (low confluence vs high) from the prior studies. Thus, it is possible that PAK binds to a BRAF-associated complex leading to their functional interaction but that the precise downstream effects may depend on other components of the complex. Current studies are ongoing to determine the nature of their interaction.

Another question regarding BRAF and PAKs relationship was whether BRAF could directly phosphorylate group 1 PAKs. We evaluated this in preliminary studies using in vitro kinase assays in which PAK1 was a substrate for activated BRAF. In these experiments, PAK1 was not phosphorylated by BRAF (data not shown); however, not all PAK isoforms were evaluated and other members of the potential BRAF–PAK complex may be needed to facilitate such the event. Further evidence opposing BRAF phosphorylation of PAK comes from the Human Protein Reference Database program (Keshava Prasad et al. 2009), which did not identify a BRAF phosphorylation motif on PAK1. Taken together, it seems unlikely that PAK1 (Wang et al. 2013) is directly phosphorylated by BRAF. The lack of a cooperative effect on migration by dually inhibiting MEK and PAK, and the lack of PAK inhibition by inhibiting MEK in those same conditions, suggests that either both pathways can maximally inhibit cell motility alone or that both signaling pathways merge downstream in the thyroid cell systems that were studied. PAKs have previously been shown to regulate MEK1 by phosphorylating Ser298, thus a common downstream pathway seems possible (Slack-Davis et al. 2003). Finally, the role of other PAK isoforms on BRAF interactions has not been tested in detail to date; we focused on PAK1 due to our prior studies demonstrating that this is the primary isoform that regulates the migration of thyroid cancer cells (McCarty et al. 2010).

In summary, we have identified a functional physical interaction between BRAF and PAK1 that regulates cell motility. The presence of the pathway is supported by activation and inhibition studies, co-localization and co-IP studies, and is further supported by in vivo data. While further studies are needed to fully characterize the protein complex between BRAF and PAK, the presence of this signaling pathway is relevant for BRAF-mediated tumor formation, progression, and perhaps resistance to therapeutic inhibitors in thyroid cancer.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/ERC-14-0424.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by the NIH Grant (P01CA124570) to M D Ringel, National Institute of General Medical Sciences of the NIH (under Award T32GM088412 to C M Knippler), and Grants P30CA016058 and S10RR025443.

References

Wong RM, Breece C & Braunstein GD 2013 Comparison with published systems of a new staging system for papillary and follicular thyroid carcinoma. *Thyroid* **23** 566–574. (doi:10.1089/thy.2012.0181)

Received in final form 10 September 2014
Accepted 15 September 2014
Made available online as an Accepted Preprint
16 September 2014