Animal models of MEN1

Hermine Mohr and Natalia S Pellegata
Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany

Abstract

Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human \textit{MEN1} gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in \textit{Cdkn1b} (p27) and not in \textit{Men1}. Both \textit{Men1}-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.

Introduction

Multiple endocrine neoplasia type 1 (MEN1) is a complex syndrome defined by the neoplastic transformation of at least two endocrine organs, most frequently parathyroid glands, pancreatic islets, anterior pituitary and endocrine pancreas. Less frequently, patients present with adrenal cortical tumors, carcinoids, facial angiofibromas, collagenomas and lipomas (reviewed in Thakker 2014). In 1997, by linkage analysis and tumor deletion mapping, the MEN1 gene located on chromosome 11q13 was identified as the gene responsible for the MEN1 syndrome (Chandrasekharappa \textit{et al.} 1997, Lemmens \textit{et al.} 1997). The encoded 610-aa long protein named Menin is a tumor suppressor, and tumors of MEN1 patients usually show loss-of-heterozygosity (LOH), which leads to loss of Menin function. The protein plays a role in cell division, genome stability and transcriptional regulation (Thakker 2014). Menin binds to a MLL-containing complex with histone methyltransferase activity and recruits this complex to the promoters of the cyclin-dependent kinase (CDK) inhibitors \textit{Cdkn1b} (p27) and \textit{Cdkn2c} (p18), thereby activating their transcription (Karnik \textit{et al.} 2005). The binding to JunD, a member of the Jun family of transcription factors, suppresses Menin’s ability to activate transcription. Not surprisingly, missense mutations in...
MEN1 that disrupt Menin’s interaction with JunD or MLL were reported in MEN1 patients and correlated with loss of Menin’s tumor suppressor function (Huang et al. 2012) (Fig. 1A).

Menin is highly conserved among species, with a 97, 97, 67 and 45% sequence homology between human and mouse, rat, zebrafish or fly, respectively (Fig. 1B). Two important Menin’s binding partners, JunD and MLL, are also relatively conserved through evolution.

The sequence identity between human JUND and the mouse, rat, zebrafish or fly orthologue proteins is 79, 79, 61 and 25%, respectively, whereas the identity to human MLL in the above mentioned species is 91, 88, 50 and 17%, respectively (source: Esembl).

To date, over 1300 germline pathogenic mutations in the MEN1 gene have been reported (Concolino et al. 2016). These alterations are spread over the whole coding sequence, including the promoter and other

Figure 1
Scheme of human Menin structure, its domains and mutations, and alignment of Menin across different organisms. (A) Scheme of the human MEN1 gene, the Menin protein and location of the so far identified mutations according to the MEN1 database (http://www.umd.be/MEN1/). The domains of Menin mediating the interaction with MLL or JunD are reported. NLS, nuclear localization signal. Asterisks indicate the most frequent mutations.

(B) Multi-species alignment of the Menin protein sequence. Protein sequences were obtained from UniProtKB for Homo sapiens (O00255), Mus musculus (O88559), Rattus norvegicus (Q9WVR8), Danio rerio (Q9IAA9) and Drosophila melanogaster (Q9VM47). Asterisks indicate the position of the most frequent mutations, as highlighted in (A).
regulatory regions. Most of the reported alterations are frameshift or nonsense mutations leading to lack of Menin expression or to a truncated (non-functional) protein variant (Lemos & Thakker 2008). Most missense mutations (68%) and the most frequently reported human mutations occur within highly conserved regions between human, rat, mouse, zebrafish and Drosophila (Marini et al. 2009, http://www.umd.be/MEN1/) (Fig. 1B).

No genotype–phenotype correlation has been found in MEN1 as individuals with the same MEN1 mutation may have different clinical presentations.

To date, several animal models of MEN1, or having a MEN1-like phenotype, have been described. We here review the existing models but we also discuss model organisms that could potentially be useful to study MEN1-associated pathogenesis (Fig. 2).

### Drosophila melanogaster: a model to study Menin’s function

The fruitfly Drosophila melanogaster has a long history as model organism and it has helped elucidate the basic principles of inheritance before DNA was discovered to be the carrier of genetic information (Beller & Oliver 2006). Genetic screening in Drosophila revealed that several genes important in tumorigenesis are conserved between fly and man, including Notch, Shh (sonic hedgehog), Wnt (Wingless) and Men1. The advantages of this model organism are on the one hand extremely short life span and generation time, numerous progeny, low maintenance costs, and, on the other hand, well-established methods to modify its genome. Disadvantageous or unfavorable characteristics are the organism’s lower complexity, as well as the necessity to keep mutant fly strains as living stocks, as embryos cannot be frozen. Due to their short life span and limited cell divisions, flies do not spontaneously develop cancer. However, transgenic flies show hallmarks of cancer such as evasion from apoptosis, sustained proliferation, metastasis, survival, genomic instability and metabolic reprogramming when cancer-associated genes are mutated (Tipping & Perrimon 2014).

The Mnn1 gene is the Drosophila orthologue of the human MEN1 gene and both genes share a similar genomic organization. Mnn1 consists of two transcripts, one which is found only in embryos while the other is expressed in adult tissues and encodes a 763 aa long protein. In humans, six different MEN1 transcripts were reported having a different 5′ UTR; however, only two with substantial differences in the coding sequence (Marini et al. 2009). Mnn1 encodes a protein having 46% overall identity with human Menin (Guru et al. 2001, Marini et al. 2009) (Fig. 1). Although the overall identity is rather low, the N-terminal part, which harbors the binding sites to several Menin interaction partners, has higher homology. Moreover, sequences at the C-terminus that were shown to be important for Menin’s nuclear localization are conserved between human and fly. Although initial studies could not demonstrate an interaction between fly Menin and human JunD in yeast two hybrid assays, this binding was then confirmed when the fly homologue of JunD was used (Cerrato et al. 2006).

Three transgenic Drosophila strains have been generated by introducing slightly different deletions in Mnn1 that result in loss of Menin expression (Busygina et al. 2004, Papaconstantinou et al. 2005, Cerrato et al. 2006). All flies having a homozygous Mnn1 deletion were viable, suggesting that the Menin orthologue is dispensable for Drosophila development. However, deletion of Mnn1 resulted in a 5–7% reduction in viability, which was identified by screening 6000 flies. Such progeny numbers...
cannot be obtained using rodent models, thereby making Drosophila a useful model organism to study genetic alterations causing subtle changes in survival.

As stated previously, Mnn1-deleted flies developed rather normally, yet when exposed to DNA-damaging agents or ionizing radiation, they displayed a higher sensitivity than wild-type flies (Busygina et al. 2004). The authors ascribed this phenotype to a defect in nucleotide excision repair in the transgenic flies, which resulted in loss of genomic integrity. Interestingly, MEN1 expression is frequently lost in human melanomas due to epigenetic silencing and deletion of the gene in melanocyte cell lines impairing homologous recombination-directed DNA repair while concomitantly inducing the error prone mechanism of non-homologous end-joining (Fang et al. 2013). Thus, Mnn1-deleted flies share molecular mechanisms with MEN1-associated human cancers.

In another Mnn1-knockout strain, flies were found to be more sensitive to a variety of different stressors (Papaconstantinou et al. 2005). Mutant flies exposed to heat shock, hypoxia, hyperosmolarity and oxidative stress had a higher degree of developmental arrest and lethality when compared with wild-type flies. Mechanistically, it was shown that Menin activates the transcription of the heat shock protein genes Hsp70 and Hsp23. This induction was abolished in the knockout flies, thereby impairing their response to stress. In a follow up study, the same authors showed that the lack of heat shock proteins induction caused by Mnn1 deletion can be linked to genome maintenance (Papaconstantinou et al. 2010). These studies broadened our knowledge of the role of Menin in regulating stress response and genomic stability.

Collectively, these Drosophila models provided us with valuable information about the function of Menin as a regulator of transcription and DNA repair, and the potential implications of these characteristics for tumorigenesis. Although Drosophila as a model organism may be a bit old fashioned, it can still be useful to elucidate the genetic events leading to secondary mutations or genomic instability or to screen for drugs that might counteract the abnormal DNA repair due to loss of Menin.

**Zebrafish as a potential model of MEN1**

**Transgenic fish strains to study NET-associated genes**

While the zebrafish Danio rerio has been used as animal model of developmental disorders for over 50 years, only recently it became a focus in cancer research. The overall advantages of the model lie in the high fecundity (up to 200 progenies/week), the simple assessment of the transparent embryos that develop outside the mother, and the conservation of most of the vertebrate organs. Also the endocrine system is conserved between human and zebrafish, with relevant orthologues of neurohormones being present (Vitale et al. 2014). In addition, a very broad genetic tool box allows easy manipulation of the zebrafish genome for large genetic screens or for specific site-directed mutagenesis (nicely reviewed in Gut et al. 2017). A few years ago, a global initiative was set in motion with the aim to target every gene in the zebrafish genome and provide researchers with the resulting mutants (www.zfin.org/). Unfortunately, although 36,284 mutant alleles have been generated so far, no Men1 mutation has been described. Yet, a functional orthologue of human MEN1 exists, named Men1, which encodes a 617 aa long protein with 67% identity and 80% similarity to human Menin (Manickam et al. 2000) (Fig. 1). Expression patterns of Menin in fish larvae correlated with those in murine tissues, and the binding ability of fish Menin to mouse and human JunD was also conserved (Manickam et al. 2000).

The generation of transgenic strains with defective Menin could provide us in the future with a promising MEN1 model especially since zebrafish develop tumors that quite well resemble human cancers at histological and molecular levels (White et al. 2013). Although such strains are currently not yet available, several zebrafish mutants exist that develop tumors belonging to the MEN1 spectrum including parathyroid, pancreatic and pituitary tumors. These models may be useful to study specific characteristics associated to NETs (e.g. interaction with the tumor microenvironment, metastatic potential, angiogenesis).

Primary hyperparathyroidism (1°HPT) is the most common phenotypic manifestation of MEN1. It is defined by an excess of parathyroid hormone (PTH), which results in hypercalcemia and ultimately in bone thinning and formation of kidney stones (Giusti et al. 2012). Fish do not possess a typical parathyroid gland; yet, studies from Okabe and Graham (2004) proved that the gills of fish are evolutionarily related structures that express calcium-sensing receptors and PTH. A transgenic zebrafish strain deleted for cdc73 has been suggested as a model for parathyroid tumors, as the human homologue HRPT2/CDC73 is responsible for the hyperparathyroidism–jaw tumor syndrome (Carpten et al. 2002, Bourque & Houvras 2011).

Pancreatic NETs were observed in zebrafish overexpressing the human MYCN gene under control...
of the core-zymod-promoter (Yang et al. 2004). The few analyzed transgenic fish mostly expressed insulin in the tumors, with glucagon expression found in one case. The tumor morphology indicated a malignant phenotype. In MEN1 patients, insulinomas are also more frequent than glucagonomas; however, all these tumors are usually benign (Tonelli et al. 2012). Interestingly, although the overexpression of MYCN was ubiquitous, only tumors in the pancreas arose. This establishes a parallel with MEN1, which is also ubiquitously expressed, but its defective function causes tissue-selective tumorigenesis. The possibility to perform large genetic screens is among the strengths of the zebrafish model, and this could be applied to search for genes associated with tissue specificity of pancreatic cancer.

Extensive work has been done to analyze the temporal and spatial development of the zebrafish pituitary gland, which shares with the organ in higher vertebrates the organization into intermediate and anterior lobe (Pogoda & Hammerschmidt 2009). At the 96-h embryonic stage, the pituitary gland is already fully developed, thereby facilitating studies focusing on alterations that affect pituitary development. Observing anomalies during development is further simplified by the transparency of the embryos and by several well-established imaging techniques (Ignatius & Langenau 2011). Mutation of the ubiquitin-specific peptidase 39 (Usp39), a protein involved in RNA splicing, promotes the expansion of anterior pituitary cells (hyperplasia), making of this transgenic zebrafish a potential model for these lesions (Rios et al. 2011). Liu and coworkers generated a transgenic zebrafish overexpressing the pituitary-transforming gene (Pttg) under the control of the proopiomelanocortin (POMC) promoter (Liu et al. 2011). These animals (Tg: Pomp-Pttg) develop corticotroph adenomas associated with decreased glucocorticoid sensitivity, oversecretion of the corticotroph hormone (ACTH) and subsequent metabolic disturbances similar to the hypercortisolism seen in Cushing’s disease patients (Lacroix et al. 2015). Although ACTH-secreting tumors represent a minority (4%) of the pituitary adenomas occurring in MEN1 patients (Uraki et al. 2017), this zebrafish model might be a valuable tool to identify molecular pathways associated to pituitary tumorigenesis or to screen for potential antitumor drugs. Indeed, zebrafish embryos can be maintained in cell culture dishes, thus simplifying large-scale screens for therapeutic agents in a cost-effective way. In the study of Liu and coworkers (Liu et al. 2011), R-roscovitine, a CDK inhibitor, was found to suppress corticotroph expansion in the transgenic zebrafish embryos. The effect of this drug was also validated in a mouse model of ACTH-secreting pituitary tumors, and R-roscovitine was therefore proposed as a potential therapeutic option for Cushing’s disease (Liu et al. 2011).

Patient-derived xenografts (PDXs) in zebrafish

Another important use of zebrafish in cancer research involves xenotransplantation studies. A hallmark of tumors is the ability to engraft after transplantation into an appropriate recipient animal. While xenografts in mice are still the gold standard, xenografting in zebrafish is increasing in popularity and examples of transplanting human cancer cell lines (Stoletov et al. 2007, Lara et al. 2011), patient-derived cancer cells (Gaudenzi et al. 2016) or tissues (Marques et al. 2009) have been reported. Tumor cells can be engrafted in zebrafish embryos, juveniles or adults, and working protocols have been established that outline the advantages and disadvantages of each approach. The problem posed by the fact that for optimal growth human cells and zebrafish require the temperature of 37 or 28°C, respectively, can be overcome by using 31°C for embryos and 35°C for adult zebrafish (Haldi et al. 2006).

From the early embryonic stages up to 1 month after birth, zebrafish do not possess a completely developed immune system, so that immune suppression to engraft xenotypic tissues is not necessary (Tobia et al. 2011). Furthermore, in the first 3–4 days of life, the embryos do not need an established blood circulation system as the oxygen can perfuse through the tissues (Pelster & Burggren 1996). Thus, transplanted cells can survive until they are able to induce neovascularization. Monitoring angiogenesis in zebrafish is simplified by the availability of several transgenic strains where blood vessels are fluorescently labeled (e.g. Tg(fli1-eGFP), Tg(flkl:mCherry), Tg(vegfr2:2-g-RFP)) (Lawson et al. 2002, Jin et al. 2005). In the translucent embryo, the newly forming blood vessels can be measured in real time by confocal fluorescence microscopy. In Fig. 3, the example of a xenograft of a prolactin-secreting pituitary adenomas in zebrafish embryos inducing the growth of the new vessels (green fluorescent-labeled endothelial cells), which sprout toward the transplanted tumor cells (chemically labeled in red) is illustrated.

Wurth and coworkers transplanted human pituitary adenoma stem cells (hPASCs) in zebrafish and in NOD/SCID mice (Wurth et al. 2016). While there was no
proliferation of hPASCs in murine hosts up to 8 months after injection, these cells readily engrafted into zebrafish embryos. In the latter system, neoangiogenesis toward the tumor mass could be detected 2–3 days after injection. Taking into account that 2–5 × 10^6 cells had to be injected into mice against 0.5 × 10^3 cells in zebrafish embryos and that the time required for cell engraftment in the embryos was a few days, exploiting this model organism for xenotransplantation experiments may bring personalized cancer therapy within reach.

Xenograft studies in zebrafish suggest that the aggressiveness of human primary tumors correlates with their ability to spread from the initial implantation site (Marques et al. 2009). To conduct these studies, tumor cells are labeled with a fluorescent dye before implantation and then invasion, migration and formation of micrometastases are followed in the translucent embryo by laser scanning confocal live imaging (Fig. 3). This approach has also been tested for NETs. In a proof-of-concept study, using eight different human primary NET samples, Gaudenzi and coworkers evaluated angiogenesis and cell migration in zebrafish xenotransplants (Gaudenzi et al. 2016). The tumors engrafted in six of eight cases and tumor originating from metastases showed a higher migration capacity, thereby proving the general applicability of the concept. In MEN1 patients, the leading cause of death is the malignant potential of pancreatic endocrine tumors (Ito et al. 2013). Using this assay in future applications might allow us to assess pancreatic NETs for their propensity to metastasize, with important implications for predicting disease outcome and selecting appropriate therapeutic interventions.

Murine MEN1 models

Constitutive and conditional Men1-knockout mice

Not always murine models of cancer recapitulate the corresponding human disease. This is not the case for mouse strains with defective Men1 function, which possess a remarkable phenotypic overlap with the human MEN1 syndrome. This despite the fact that most MEN1 mutations in patients are point mutations leading to truncated peptides, whereas the mouse models were generated by deleting entire exons of the Men1 gene. Therefore, to mimic the human disease, it is not necessary to have a specific genetic mutation as long as Menin’s function is abolished.

We will here focus on the phenotypic differences among the various Men1-knockout models in comparison to the human disease (Fig. 4).

Four different transgenic mouse lines were created by constitutive deletions of the Men1 gene. In each model,
different exons of Men1 were targeted, resulting in loss of Men1 transcription (e.g., deletion of exon 1–2, Men1Δ1–2 (Harding et al. 2009), and deletion of exon 2, Men1Δ2 (Loffler et al. 2007)) or in truncated Men1 transcripts (e.g., deletion of exon 3, Men1Δ3 (Bertolino et al. 2003a) or of exons 3–8, Men1Δ3–8 (Crabtree et al. 2001)). Regardless of the targeting site, these mouse strains share a similar tumor spectrum, albeit the frequency of the individual tumor types differs among them. In all four transgenic lines, homozygous Men1-knockout mice died at embryonic stages E10.5–E13.5. Therefore, studies were performed on heterozygous knockout animals. In all mouse lines, loss of the wild-type Men1 allele was found in the tumors. This closely resembles the situation in MEN1 patients whose tumors usually show LOH (Valdes et al. 1998). In addition to these conventional knockout models, conditional mouse lines with tissue-specific deletion of Men1 were generated and are here presented and compared with the constitutive models.

**Parathyroid glands** In MEN1 patients, primary hyperparathyroidism is the most prevalent, and often the first, symptom with an incidence of 95–100% and is usually due to hyperplasia or adenoma in the parathyroid glands (Giusti et al. 2012). In the constitutive knockout mouse lines, this phenotype occurred with an incidence of only 17–42%. In Men1Δ3–8/+ mice, although serum calcium levels were not elevated, the incidence of parathyroid adenomas was 12-fold higher than that in wild-type animals. In one case, progression to parathyroid carcinoma was detected. In Men1Δ3/− mice, PTH levels were not significantly elevated, yet a few animals had enhanced secretion of the hormone (Bertolino et al. 2003a). Serum calcium levels were not assessed. In these mice, parathyroid adenomas were observed starting at 12 months (41% of mice) and by 19+ months they reached the frequency of 64%. Increased incidence of parathyroid tumors with age was also a characteristic of Men1Δ2/− mice but the rates were lower, reaching only 15% in 2-year-old mice (Loffler et al. 2007). In the Men1Δ1–2/− model, hypercalcemia and hypophosphatemia were observed, which were caused by overactivity of PTH, and not by increased levels of the hormone (Harding et al. 2009). In conclusion, similar to MEN1 patients, all Men1-knockout lines show abnormalities in the parathyroid glands, albeit with variable frequencies.

In a conditional mouse model obtained by crossing Men1Δ3–8flox/flox mice with animals carrying Cre under control of the PTH promoter, up to 80% of the homozygous mice developed hyperparathyroidism (Libutti et al. 2003). Elevated serum calcium levels were detected by 7 months of age, and an enlargement of the parathyroid glands was visible by 9 months. By 14 months, the size of the glands was 5-fold bigger in transgenic than in control animals. The specificity of the Cre recombinase expression was very high, as no tissue other than the parathyroid glands was affected. Consequently, these mice are a suitable
model to study primary hyperparathyroidism without the interference of other hormonal imbalances.

**Gut and pancreas** Gastroentropancreatic (GEP) NETs are the second most common neoplasm in MEN1 patients. They can be subdivided into functioning tumors (hormone secreting, frequency up to 40%) and nonfunctioning tumors (60–100%). Functioning GEP-NETs are defined based on the hormone they secrete. Insulinomas, pancreatic tumors secreting insulin, occur in 21% of patients, glucagonomas in 3%, while somatostatinomas, VIPomas and GHRH-omas are quite rare (1% of cases) (Tonelli et al. 2012). In MEN1 patients, gastrin-producing tumors (gastrinomas) mainly occur in the duodenum wall with a frequency of 50%, but micro-gastrinomas have also been observed in the pancreas (Pritchard et al. 2007). GEP-NETs in MEN1 patients present as multiple lesions and tend to metastasize.

In Men1Δ3–8/+ mice, pancreatic islet tumors developed at high frequency and correlated with elevated serum insulin levels, suggesting that they are insulinomas (Crabtree et al. 2001). The Men1Δ3/+ model showed islet cell hyperplasia in 65% of cases at the age of 8–12 months, but also adenomas (5%) and carcinomas (9%), whereas gastrinomas occurred in 19% of the analyzed mice. All pancreatic NET subtypes could be detected, with the occasional simultaneous overexpression of two hormones, a feature also observed in microadenomas of MEN1 patients (Anlauf et al. 2006). In this model (i.e. Men1Δ3/+), GEP-NETs had a higher incidence than parathyroid tumors (41%).

Also in the Men1Δ2/+ model of Loffler et al. (2007) over 80% of mice harbored pancreatic lesions of different grades up to adenomas. No gender difference was found regarding the incidence of GEP-NETs. It should be noted that in this study over 130 mice were analyzed thereby reaching more statistical power when compared with reports where fewer animals were studied. Most of the adenomas were insulinomas, some were glucagonomas, but gastrin immunoreactivity was usually absent. In line with other models, pancreatic islet hyperplasia and pancreatic adenomas were found at high incidence in Men1Δ1-2/+ mice. Given that gastrinomas in patients develop in stomach and duodenum, 36 knockout mice between the ages of 18–21 months were intensively screened for the presence of these extrapancreatic gastrinomas, but none were found.

Altogether, the whole-body knockout mouse lines recapitulate the high incidence of pancreatic NETs seen in MEN1 patients but not that of the gastrinomas, much more rare.

Due to the underrepresentation of these tumors in the various mouse models, Veniaminova and coworkers (Veniaminova et al. 2012) addressed the question as to whether the deletion of Men1 is sufficient to induce gastrinomas by specifically deleting Menin in antral and intestinal epithelium. To this aim, the authors crossed Men1Δ3–8/flox/flox mice with Villin-Cre or leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5)-Cre mice. The resulting conditional knockout mice developed hypergastrinemia, but again no gastrin-secreting tumors. It needs to be noted that the recombination of the floxed sites was not complete, so that residual Menin expression was still present in the targeted tissues and may have prevented tumor formation.

Three studies addressed the effect of tissue-specific deletion of Menin in pancreatic β-cells by crossing four different rat insulin promoter (Rip)-Cre mouse lines with three different floxed Men1 lines (Fig. 4). In order to easily distinguish these models, we will name them Men1Δ3–8/flox/flox (Crabtree et al. 2003), Men1Δ3/flox/flox (Bertolino et al. 2003b) and Men1Δ2/flox/flox (Biondi et al. 2004) based on the exonic region excised after recombination. Several versions of the Rip were used in these studies, leading to the conclusion that the stronger the promoter, the earlier and more pronounced was the phenotype. In all studies, homozygous tissue-specific deletion of Men1 resulted in larger islet sizes compared to the heterozygous-deleted mice, as well as hyperplasias and insulinomas. In conditional Men1Δ1–8/flox/flox/Rip-Cre mice, the size of the insulinomas correlated with the secretion of insulin, the level of blood glucose and the survival rate (Crabtree et al. 2003). Tumor latency in the conventional heterozygous knockout mice was dependent on the complete loss of Men1, which represented the rate-limiting step, whereas in the conditional floxed mice, both alleles are lost upon recombination and thus the tumors develop earlier. Tumor progression was characterized by dedifferentiation, angiogenesis and multistage tumorigenesis (Bertolino et al. 2003b). Studies of Men1Δ3/flox/flox/Rip-Cre and Men1Δ2/flox/flox/Rip-Cre models revealed a poor tissue specificity of Rip-mediated Cre expression, and consequently, these mice developed pituitary tumors too, which were mainly prolactinomas. Different chromosomal rearrangements were found in pancreatic and pituitary tumors of Men1Δ3/flox/flox/Rip-Cre animals, with duplication of chromosome 11 and of chromosome 15, respectively, being the most frequent alterations. One possible explanation for these findings is that loss of Men1 increases the susceptibility to a second mutagenesis hit in a tissue-specific manner.
To study the early events associated with Men1 deletion in pancreatic islets, two conditional and inducible mouse models were generated. Schnep and coworkers (Schnep et al. 2006) crossed the Men1Δ3-8floxflox/Rip-Cre mice described above (Crabtree et al. 2003) with Cre-ER (estrogen receptor) transgenic mice expressing Cre under the control of a ubiquitously active human ubiquitin carrier 9 (UBC9) promoter. In the resulting mice (named Men11/Δ;Cre-ER), the excision of Men1 can be induced by tamoxifen in a controlled fashion. Men11/Δ;Cre-ER mice at 12 weeks of age were treated with tamoxifen and their pancreata were analyzed 7, 14 and 30 days later. Loss of Men1 caused an increase in islet cell proliferation detectable already 7 days post-treatment, which resulted in islet enlargement and hyperplasia at the 14-day time point (Schnep et al. 2006). One limitation of this study is that mice were analyzed before tumor development could take place. Moreover, the Men1 gene was deleted not only in islet cells but also in the exocrine pancreas and in other mouse tissues due to the broad expression of the Cre-ER transgene. Subsequently, another conditional, inducible mouse line was established by crossing Men11/Δ mice (see above) with mice expressing the tamoxifen-inducible Cre-ER driven by the rat insulin promoter (RIP2-Cre-ER) for a Cre expression restricted to pancreatic endocrine cells (Lines et al. 2017a). The resulting Men1Δ16;RIP2-Cre-ER transgenic mice were treated with tamoxifen at 12 weeks of age and analyzed up to 5 months later (age 7, 5–8, 5 months) when pancreatic endocrine tumors (insulinomas) were present. Loss of Menin in the islets was observed in transgenic mice at all ages, along with a rise in both proliferation of pancreatic β-cells and islet area (Lines et al. 2017a). These inducible mouse models further strengthen the hypothesis that increased cell proliferation is the first effect of Menin loss.

**Pituitary gland** Pituitary tumors were a feature of all conventional knockout mice. Interestingly, the gender difference that is seen in men is recapitulated in mice: females have a higher prevalence of pituitary adenomas. In the Men1Δ2/Δ line, pituitary tumors were present in 78% of the female mice vs 42.0% of the males (Loffler et al. 2007) (Fig. 4). In these mice, both anterior pituitary microadenomas and macroadenomas were observed, which were highly vascularized and showed signs of necrosis. Mass effects due to the significant increase in pituitary size were seen. Prolactin-positive and nonfunctioning tumors were found in these mice, but no ACTH-secreting adenomas. Pituitary adenomas were more frequent in females also in Men1Δ3-8/Δ mice, and all analyzed tumors were prolactinomas (Crabtree et al. 2001). In the Men1Δ11-2/Δ line (Harding et al. 2009), the incidence of pituitary adenomas was only 31.4%, and all tumor subtypes were seen (i.e. prolactin-, GH- and ACTH-secreting adenomas, as well as nonfunctioning ones). Considering pituitary adenomas, the various constitutive knockout mice are a relatively faithful model of MEN1, although differences in tumor incidence and subtypes were observed between mice and men.

**Adrenal gland** All conventional Men1-deficient models developed tumors in the adrenal gland with frequencies ranging from 10 to 43%: not only adrenocortical tumors (20–43%) but also bilateral pheochromocytomas (7%) were found in Men1Δ3-8/Δ mice (Crabtree et al. 2001). Men1Δ1-2/Δ animals developed cortical hydroxysteroid hydroxylase-positive adenomas at low frequency (7%) and pheochromocytoma was detected in one case (Harding et al. 2009). Surprisingly, only male knockout mice developed adrenocortical adenomas. While gender differences in pituitary adenomas are a feature of MEN1, no differences in adrenal tumors development between genders have been reported in patients (Goudet et al. 2011).

**Other tissues** MEN1 patients suffer from a variety of skin lesions that occur in 33–84% of the cases. The presence of multiple collagenomas and angiofibromas is a good indicator of the MEN1 syndrome (Ashgarian et al. 2004). Cutaneous tumors were not observed in any of the above described mouse models. In contrast, all constitutive knockout mice developed tumors in the gonads. Leydig tumors of the testis were found in 22–88% of the male mice and sex-cord stromal tumors in the ovary were found in Men1Δ3-8/Δ, Men1Δ3/Δ and Men1Δ11-2/Δ females with incidences ranging from 8 to 40%. These tumors do not belong to the MEN1 tumor spectrum. Detailed studies revealed that the wild-type Men1 allele was not lost in the Leydig cell tumors of the heterozygous knockout mice (Loffler et al. 2007) and thus molecular events other than Menin loss of function might account for the tumorigenesis in these cells.

Non-small-cell lung cancer (NSCLC) was observed in Men1Δ1-6/Δ mice with an incidence varying from 22% (Crabtree et al. 2001) to 42% (Pei et al. 2007) depending on the study. Lung tumors are rarely seen in MEN1 patients (8% of cases). The different frequency of NSCLC occurring in the same transgenic model might be due to the background strain of the mice, as Pei and coworkers backcrossed Men1Δ3-8/Δ animals to the C57/BL6 background.
For the sake of completeness, it needs to be mentioned that Men1Δ1–3 mice older than 19 months of age develop mammary carcinomas at low frequency (8.3%) (Bertolino et al. 2003a), as well as carcinomas of the prostate in 12.8% of cases (Seigne et al. 2010). These neoplasms do not belong to the tumor spectrum of the MEN1 syndrome.

It should be taken into account that for the models described previously, mouse lines were usually a mixture of different background strains. This hampers the comparison of the different murine MEN1 models, due to strain-specific sensitivity to tumor development (Brayton 2007).

**Preclinical studies with MEN1 mouse models**

As stated above, the Men1 knockout models recapitulate several of the key phenotypic features of the human MEN1 syndrome. Hence, it is reasonable to exploit them for preclinical studies aimed at identifying novel effective therapies against NETs, and a few such studies have indeed been conducted so far. We here discuss several examples of such studies which evaluated different therapeutic approaches.

As Menin-dependent tumorigenesis starts with the loss of both functional Men1 alleles, Walls and coworkers (Walls et al. 2012) explored the feasibility of a Men1 gene replacement therapy in vivo using a recombinant replication-deficient adenoviral vector containing the mouse Men1 gene under the control of a cytomegalovirus promoter (Men1.rAd5). The virus was injected into the pituitary adenomas of Men1Δ1–2/Δ1 female mice (Walls et al. 2012). Although the proliferation rates of pituitary tumors decreased, no changes in tumor mass or apoptosis were detected 4 weeks after injection of the recombinant adenoviruses.

Promising results were obtained by treating Men1Δ1–8/+ mice with the monoclonal antibody mAB-G6-31 directed against vascular endothelial growth factor A (VEGF-A), the best characterized pro-angiogenic factor (Korsisäari et al. 2008). Pituitary tumors are highly vascularized and thus by inhibiting angiogenesis, tumor progression should be suppressed. Indeed, Korsisäari and coworkers (Korsisäari et al. 2008) could nicely demonstrate that both tumor size and vascularization were reduced by the drug both in situ in Men1Δ1–8/Δ1 mice and in syngeneic models of the mouse pituitary adenomas. Upon treatment with the anti-VEGFA antibody, mice bearing pituitary tumors showed a reduction in serum prolactin levels. In contrast, the insulin levels, elevated due to the insulinomas, were unaffected by the drug. Targeting angiogenesis with sunitinib, a multikinase inhibitor, reduced the proliferation rates of the insulinomas developing in Men1Δ3–8flox/flox/Pdx1-Cre mice, which was not accompanied by changes in tumor vascularization (Shen et al. 2009). Effects on insulin secretion were not assessed in this study. Thus, both studies suggest that the treatment of MEN1-associated tumors with drugs targeting angiogenesis might be effective at reducing tumor size.

NETs often express somatostatin receptors (SSTRs) on their cell membrane, and this has been exploited for diagnostic imaging, radiotherapy and pharmacological treatment using stable somatostatin analogues such as octreotide. Taking advantage of SSTR expression on pancreatic NET cells, Smith and coworkers (Smith et al. 2016) used an adenovirus displaying octreotide on the surface to deliver tumor necrosis factor (TNF) to the tumor cells in order to induce apoptosis. These viral particles were tested in the conditional Men1Δ3–8flox/flox/Pdx1-Cre mice (Shen et al. 2009) in vivo and found to reduce tumor size, to lower tumor metabolism and insulin secretion thereby leading to improved survival (Smith et al. 2016).

The efficacy of pasireotide (SOM230), a multi-ligand somatostatin analogue, against pancreatic NETs was evaluated in the Men1Δ3–8flox/flox/Pdx1-Cre mouse model (Quinn et al. 2012). This agent reduced tumor volume of the insulinomas by activating apoptosis. Circulating insulin levels decreased in the treated mice and, as a consequence, blood glucose reached more physiological levels. Adjustment of the blood glucose levels had a positive effect on the survival rates of the treated mice, but due to small group sizes, no statistical analyses were performed. In another study, treatment of Men1Δ1–2/+ mice with pasireotide was found to reduce pancreatic tumor volume and frequency, to suppress pancreatic islet cell proliferation and induce apoptosis (Walls et al. 2016).

Chromatin remodeling via histone modifications has been shown to play an important role in tumorigenesis and several drugs have been developed that target epigenetic pathways (Jones et al. 2016). Menin interacts with histone methyltransferases in pancreatic β-cells thereby initiating specific transcriptional programs that promote cell proliferation (see above). Moreover, human sporadic and familial pancreatic NETs show mutations in chromatin remodeling genes such as DAXX and ATRX (Jiao et al. 2011). These findings provide the rationale for the evaluation of compounds targeting epigenetic regulatory proteins in these tumors. Recently, Lines et al. (2017b) tested several epigenetic drugs for efficacy on pancreatic NET cells in vitro, and the most promising one, JQ1, was then evaluated in vivo in Men1Δ3–8flox/RIP2-Cre-ER mice. JQ1 is
an inhibitor of the bromo and extra-terminal motif (BET) proteins that bind acetylated lysine residues. This agent was able to reduce proliferation and promote apoptosis in pancreatic NETs of the transgenic mice, suggesting that targeting epigenetic pathways might be an effective strategy for the treatment of these tumors.

Based on the observation that active β-catenin accumulates in pancreatic NETs of Men1-deficient mice, conditional Men1Δ/Δfoxn1fox/Cre mice were treated with a small molecule antagonist of the T cell factor/β-catenin complex, i.e. PKF115-584 (Jiang et al. 2014). Mice at the age of 14 months were treated for 8 weeks with PKF115-584 and then their pancreatic tumors were assessed for proliferation, which was suppressed by the drug. In addition, PKF115-584 treatment improved hypoglycemia in these mice by reducing insulin secretion.

Altogether, these studies emphasize the potential of the various Men1-knockout mouse models as translational platforms to identify effective therapies for MEN1 patients.

**Patient-derived xenografts (PDXs) in mice**

The variety of cell types, stages of progression and sequential mutational events contribute to the tumor heterogeneity typically seen in most human tumors, including NETs (Hessman et al. 2001). It has been suggested that one of the reasons behind drug failure in clinical testing is the lack of complexity of the models used for preclinical testing. A possibility to circumvent the potential lack of predictive power of various lower model organisms could be the use of patient-derived xenografts (PDXs) in preclinical studies.

Transplantation of human tumor samples into appropriate immunocompromised murine hosts allows the propagation of the primary tumors while maintaining their histological and genetic characteristics (Cassidy et al. 2015). Protocols for successfully engrafting human tumor cells/tissues into mouse recipients have been established (Mattar et al. 2017). The engraftment rate is strongly dependent on the intrinsic characteristics of the primary tumor, with aggressive tumors having in general higher rates (Siolas & Hannon 2013). The slow proliferation rate of NETs has historically hampered the generation of tumor cell lines (Grozinsky-Glasberg et al. 2012) and poses a problem also for their xenotransplantation. Only a few studies so far have reported the engraftment of NETs but with rather low success rates. In a proof-of-concept study Powers et al. (2017) demonstrated for the first time, the successful engraftment of pheochromocytomas and paragangliomas in the NSG mouse model. Histological analysis proved the conservation of tumor features in the PDXs, and BrdU labeling demonstrated the proliferation of tumor grafts in the host. The NSG mouse strain is more immunocompromised than the better-known NOD/SCID strain, and the lack of thymoma formation allows the mice to age up to 1.5 years in appropriate housing conditions. Therefore, NSG mice represent the ideal strain to engraft slow-growing tumors (Shultz et al. 2005).

In another study, using fragments of 39 well-differentiated grade 1 and 2 pancreatic NETs, only one tumor generated xenografts in 90% of the host NSG mice over multiple passages (Krampitz et al. 2016). In a bigger tumor cohort, only 7 of 106 gastrointestinal NETs were successfully engrafted. Of these seven xenografts, only one tumor could be passaged several times and maintained for 2 years in NSG mice. Remarkably, the tumor retained its morphology and molecular characteristics over time (Yang et al. 2016). With this established PDX model, the authors plan to carry out preclinical drug studies. Francois and coworkers have already used PDX models of pancreatic NETs in drug efficacy tests (Francois et al. 2015). Treating the PDX models with an inhibitor of focal adhesion kinase (FAK), they could show a reduction in tumor progression over time. Interestingly, the tumor volume of the untreated control PDX doubled in 2 weeks, indicating a faster proliferation of the tumor cells when compared with the aforementioned studies.

MEN1 is a rare disease with 1 in 30,000 people being affected (Marini et al. 2009). Accessibility to patient material is therefore limited. This precious material could be preserved by subsequent passaging in nude mice to then conduct biomarker screening and drug testing using the same tissue. The finding that loss of Menin increases cell proliferation might come in handy for the engraftment of MEN1 patient-derived tumors that usually have no expression of the protein. Indeed, these tumors might grow and progress faster than usual NETs, thereby resulting in a higher engraftment rate. In a xenotransplantation study, A549 cells derived from a human lung carcinoma cell line were stably transfected with either control or Menin-overexpressing constructs. These cells were then injected into nude mice, and it was demonstrated that Menin levels negatively affect the engraftment and growth of the cells (Gao et al. 2009).

**MENX rats as a MEN1-like model**

The MENX multi-tumor syndrome was discovered by serendipity in a rat colony that spontaneously started to develop multiple NETs. Affected rats present with
Animal models of MEN1

In addition to morphology and hormone expression, rat and human pituitary adenomas also share common genetic signatures. Transcriptome analysis identified dysregulated genes in both species that are involved in tumorigenesis and may represent novel biomarkers for future clinical applications (Lee et al. 2015).

MENX rats are the only spontaneous model of NFPAs. Moreover, adenomas develop in all affected animals. Considering these two aspects, MENX rats are the ideal model to evaluate novel antitumor drugs for their efficacy against NFPAs. Studies were thus performed to test BEZ235, a dual PI3K/mTOR inhibitor, in vitro (on 3D cultures of rat primary pituitary adenoma cells) and in vivo in the rats. The results demonstrated that BEZ235 has anti-proliferative and pro-cell death activities against rat pituitary adenomas tumors both in vitro and in vivo. Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to monitor treatment efficacy and emerged as a useful modality to assess early therapy response (Lee et al. 2015). These findings provided a rationale for the clinical investigation of PI3K/mTOR inhibition in NFA patients.

Pancreas

MENX rats develop pancreatic islet hyperplasia (100%), which leads to an increase in islet mass already detectable 2 weeks after birth (Wiedemann et al. 2016a). The pancreatic islets consist of five types of cells each producing a specific hormone. In mutant rats, all five cell populations are increased in number. The islet hyperplasia occasionally progresses to insulinomas (Fig. 5). Following oral glucose stimulation test, mutant female rats showed increased insulin output when compared with wild-type littermates, compatible with their islet hyperplasia (Pellegata, unpublished).

Adrenal gland

Adrenal tumors belong to the spectrum of the MEN1 syndrome but usually arise in the cortex. Tumors of the adrenal medulla (pheochromocytomas) occasionally occur in Men1-deficient mice (see above). MENX rats develop adenomediarry hyperplasia at 3–4 months of age, which progresses to pheochromocytoma by 6–8 months (frequency 100%). The histology of these lesions resembles that of human pheochromocytoma. The rat tumors show high mitotic counts and elevated Ki67 labeling index (average 8% at >8 months) (Marinoni et al. 2013). In addition to morphology and hormone expression, rat and human pituitary adenomas also share common genetic signatures. Transcriptome analysis identified dysregulated genes in both species that are involved in tumorigenesis and may represent novel biomarkers for future clinical applications (Lee et al. 2015).

Pituitary gland

MENX-affected rats develop multifocal tumors in the anterior pituitary (frequency 100%), which belong to the gonadotroph lineage and are histologically and ultrastructurally similar to human gonadotroph adenomas (Marinoni et al. 2013). In patients, gonadotroph adenomas are clinically nonfunctioning (named NFPAs). These tumors occur in about 5% of MEN1 patients. The lesions in affected rats start from 4 months of age as multiple neoplastic nodules and progress to become large adenomas that efface the gland. Rat adenomas express the glycoprotein alpha-subunit (αGSU) at all stages of progression. Similar to NFPA patients, the expression of LHβ and FSHβ subunits is present in the early lesions but is then lost in the larger tumors, accordingly serum LHβ levels in the mutant rats decrease with tumor progression. Rat adenomas show mitotic activity and relatively high

http://erc.endocrinology-journals.org DOI: 10.1530/ERC-17-0249 © 2017 Society for Endocrinology
Printed in Great Britain Published by Bioscientifica Ltd.
Animal models of MEN1

Fritz Miederer, Molatore Wiedemann, Gartner Wiedemann

Endocrine-Related Cancer

Thematic Review

H Mohr and N S Pellegata

Animal models of MEN1

24:10
T173

Figure 5
Pancreatic islets in wild-type and MENX mutant rats. (A) Hematoxylin and eosin (H&E) staining of an area of the pancreas of a wild-type adult rat containing two islets. (B) H&E staining of an area of the pancreas of an adult MENX mutant rat. The endocrine tumor is composed mostly of insulin-expressing cells, as demonstrated by immunohistochemistry with an anti-insulin antibody (right figure). Size bars: panel A and two most right hand panels in B: 100 µm; left hand panel in B: 200 µm.

labeling index (Miederer et al. 2011). Pheochromocytoma in patients secretes an excess of catecholamines. To verify whether the same occurs in rats, urine catecholamine levels were measured longitudinally in both MENX-affected and wild-type animals by high-performance liquid chromatography. Mutant rats at 8 months of age show increased urinary concentrations of norepinephrine, normetanephrine, 3-methoxytyramine and dopamine compared to wild-type age-matched rats; hence, their tumors are noradrenergic (Wiedemann et al. 2016b). This is consistent with the lack of expression of phenylethanolamine N-methyltransferase (PNMT), the enzyme that converts noradrenaline to adrenaline, in these tumors (Molatore et al. 2010b). In patients with pheochromocytoma, high catecholamine secretion associates with an increase in blood pressure, which, if not controlled, can cause severe symptoms. Non-invasive measurements performed on mutant and wild-type rats over time showed that blood pressure increases in the MENX animal model together with tumor progression, as in patients. Moreover, mutant rats show pathological changes in organs such as heart and kidney, similar to those observed in the patients if blood pressure is not controlled (Wiedemann et al. 2016b). Rat and human pheochromocytomas also share gene expression signatures (Molatore et al. 2010b, Leinhauser et al. 2015). For the diagnosis and staging of pheochromocytoma, functional imaging plays a crucial role. In addition to $^{131}$I/$^{123}$I-metaiodobenzylguanidine (MIBG) scintigraphy, a gold standard procedure, a variety of tracers have been developed for the detection of pheochromocytoma using positron emission tomography (PET), including $^{18}$F-fluorodopamine (DOPA), $^{11}$C-hydroxyephedrine (HED) a norepinephrine analog and $^{68}$Ga-DOTATOC targeting somatostatin receptors. Noteworthy, also the rat tumors show uptake of these radiotracers (Miederer et al. 2011, Gartner et al. 2013). MENX rats were used to test a novel norepinephrine analog (e.g. LMI1195) for its ability to detect pheochromocytoma in vivo by PET imaging. High and specific accumulation of $^{18}$F-LMI1195 in the adrenals of tumor-bearing mutant rats was seen over time. Its favorable biodistribution makes it a promising PET tracer for pheochromocytoma imaging (Gartner et al. 2013). Given that in MENX rats pheochromocytoma develops with complete penetrance and recapitulates several key features of the human tumors, therapy-response studies were conducted to test the efficacy of BEZ235 (dual PI3K/mTOR inhibitor) in this model in vivo. The results showed that this agent holds promise for the treatment of pheochromocytoma (Lee et al. 2017).

Other organs

Parathyroid hyperplasia has been observed in MENX-affected rats. The incidence was 65% when considering macroscopically visible tumors at the time of death (Fritz et al. 2002). It is not known whether the blood levels of PTH are elevated in affected rats as a consequence of the parathyroid hyperplasia. MENX rats also present with bilateral hyperplasia of the thyroid C-cells, a feature exclusively associated with MEN2.

Concluding remarks

In cancer research, animal models are used to understand the underlying pathogenetic mechanisms and to develop strategies to diagnose and treat the corresponding human disease. Depending on the specific questions to be addressed, not necessarily model organisms with higher complexity represent the most appropriate option. For instance, high-throughput screening of new putative targets or antitumor agents might be more easily and cost-effectively carried out in Drosophila or zebrafish, whereas rodents or PDX models might be better suited for an
in-depth characterization of tumor biology. The available Menin-deficient transgenic Drosophila strains have shed light on the protein’s function. The use of PDX models of NETs (in mice) is still in its infancy, as only a few studies have been performed so far and with variable success. However, this platform could allow to preserve and to propagate the rare tumors of MEN1 patients for further studies. Although tumors cannot be passaged in zebrafish xenografts, the implantation and characterization of primary patient samples are quite promising.

Interestingly, although mouse models of MEN1 show an impressive overlap of pathologically relevant features with the human syndrome, they have been underused for molecular and preclinical studies. Serum profiling of these mice or tumor transcriptome analysis could provide us with new therapeutic targets or biomarkers, whereas the evaluation of novel drugs or existing ones in off-label use in these models could identify effective therapies for MEN1 patients. Moreover, these mouse models might be suitable to establish imaging modalities for diagnosis and therapy-response monitoring. Therefore, investing time and effort in further characterizing the existing MEN1 models has the potential for a big return if we thereby create more reliable in vivo platforms for therapy assessment studies.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding
The work of the authors is supported by the Deutsche Forschungsgemeinschaft SFB824, subproject B08, and by the Deutsche Krebshilfe (grant 70112383).

Acknowledgements
The authors thank Dr Germano Gaudenzi and Prof. Giovanni Vitale (University of Milan, Italy) for sharing with us unpublished data.

References


Animal models of MEN1


Thematic Review

Animal models of MEN1


Received in final form 20 July 2017
Accepted 25 July 2017
Accepted Preprint published online 25 July 2017

http://erc.endocrinology-journals.org DOI: 10.1530/ERC-17-0249 © 2017 Society for Endocrinology Printed in Great Britain Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 12/21/2018 06:57:32PM via free access