Targeting the TSH receptor in thyroid cancer

Christopher W Rowe¹,²,³, Jonathan W Paul²,³, Craig Gedye³,⁴,⁵, Jorge M Tolosa²,³, Cino Bendinelli²,⁶, Shaun McGrath¹,² and Roger Smith¹,²

¹Department of Endocrinology, John Hunter Hospital, Newcastle, Australia
²School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
³Hunter Medical Research Institute, Newcastle, New South Wales, Australia
⁴Department of Medical Oncology, Calvary Mater Newcastle, Waratah, Australia
⁵School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
⁶Department of Surgery, John Hunter Hospital, Newcastle, Australia

Abstract

Recent advances in the arena of theranostics have necessitated a re-examining of previously established fields. The existing paradigm of therapeutic thyroid-stimulating hormone receptor (TSHR) targeting in the post-surgical management of differentiated thyroid cancer using levothyroxine and recombinant human thyroid-stimulating hormone (TSH) is well understood. However, in an era of personalized medicine, and with an increasing awareness of the risk profile of longstanding pharmacological hyperthyroidism, it is imperative clinicians understand the molecular basis and magnitude of benefit for individual patients. Furthermore, TSHR has been recently re-conceived as a selective target for residual metastatic thyroid cancer, with pilot data demonstrating effective targeting of nanoparticles to thyroid cancers using this receptor as a target. This review examines the evidence for TSHR signaling as an oncogenic pathway and assesses the evidence for ongoing TSHR expression in thyroid cancer metastases. Priorities for further research are highlighted.

Introduction

The thyroid-stimulating hormone (TSH) receptor (TSHR) is a surface glycoprotein receptor, part of the leucine-rich repeat subfamily of G-protein-coupled receptors (LGR). It has been described as the ‘master switch’ in regulating thyroid growth, differentiation and thyroid hormone secretion, and is the antigenic target in Graves’ disease (Davies et al. 2005). TSHR is expressed on benign and malignant thyrocytes as the target receptor for TSH. In current clinical management of differentiated thyroid cancer (DTC), TSHR is therapeutically targeted to maximize radiiodine uptake into malignant thyrocytes by transiently upregulating the sodium–iodide symporter (NIS) through TSH stimulation, either endogenously through thyroid hormone withdrawal or exogenously with recombinant human TSH (rhTSH) (Haugen et al. 2016). Additionally, proliferative signals to malignant thyrocytes mediated through the TSHR are therapeutically minimized by inducing pharmacologic hyperthyroidism, resulting in endogenous TSH suppression. Recent scientific advances suggest new strategies to target TSHR in thyroid cancers, either using selective small-molecule inhibitors of the TSHR to obviate the need for systemic hyperthyroidism or using the TSHR as a target to enhance the therapeutic index for drug delivery systems. This increased interest demands a critical appraisal of evidence for persistent TSHR expression in metastatic
thyroid cancer. Herein, we review the evidence for TSHR signaling as a mitogenic pathway in thyroid cancers, assess the evidence for persistence of TSHR in advanced thyroid cancer and discuss new therapeutic strategies on the horizon.

Structure and distribution of TSHR

TSHR is a 764 amino acid 7-transmembrane domain receptor in the G-protein-coupled receptor superfamily. TSHR is encoded by the gene, thyroid-stimulating hormone receptor (TSHR), located on chromosome 14q31 and first cloned in 1989 (Parmentier et al. 1989). Although encoded by a single gene, the gene product undergoes post-translational cleavage into an extracellular A-subunit and a largely intracellular B-subunit linked by disulfide bonds, with the exclusion of a 50 amino acid C-peptide region (Rapoport & McLachlan 2016). The A-subunit contains multiple binding sites for TSH within a leucine-rich ‘binding pocket’, which undergoes conformational change after binding of TSH or stimulatory autoantibodies, resulting in receptor activation (Davies & Latif 2015).

TSHR is predominantly expressed on the basolateral membrane of thyroid follicular cells. Surface expression of TSHR is estimated at 5000 receptors per cell (Rees Smith et al. 1988). TSHR mRNA and protein have been detected in a variety of other human and animal tissues, including neural and immune tissues, ocular muscles and bone (Davies et al. 2002, Williams 2011, Bassett & Williams 2016). In particular, the role of TSHR expression in orbital preadipocytes and fibroblasts in the pathogenesis of Graves’ ophthalmopathy has been extensively studied (Smith 2015), and there are animal data to support TSHR-mediated bone remodeling (Abe et al. 2003, Ma et al. 2011). Human data regarding TSHR mRNA expression and protein production in extrathyroidal tissue are presented in Table 1. We are not aware of studies that quantify TSHR receptor density in extrathyroidal tissue. In most extrathyroidal tissues the physiologic role of the TSHR remains unclear (Williams 2011).

TSH as a growth factor for benign and malignant thyrocytes

TSH and intracellular growth signaling

As a glycoprotein receptor in the rhodopsin family, TSHR responds to binding with activation of its coupled G protein. Activation of Gs stimulates adenylyl cyclase and activates the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with well-established mitogenic effects, whereas Gq stimulation results in the activation of protein kinase B and mitogen-activated protein kinase (MAPK) pathways (Morshed et al. 2009). The downstream effects are to increase the transcription of thyroid-specific genes, particularly controlling iodine uptake, synthesis of thyroglobulin and thyroperoxidase, with the end result of thyroid hormone production (Roger et al. 1988, Vassart & Dumont 1992, Bruno et al. 2005). The regulation of thyrocyte growth has been extensively studied using in vitro models; however, it is well recognized that human in vivo confirmation of any such model is paramount (Kimura et al. 2001).

Bruno and coworkers (Bruno et al. 2005) demonstrated in vivo in humans that TSH regulates the transcription of NIS (SLC5A5), thyroglobulin (TG), thyroperoxidase (TPO) and paired box 8 (PAX8) mRNA, but not TSHR, pendrin

Table 1 Data from studies of human extra-thyroidal tissue expression of TSHR.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>mRNA</th>
<th>Protein*</th>
<th>Functionality*</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipose tissue</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Bell et al. (2000), Murakami et al. (2001), Gagnon et al. (2014)</td>
</tr>
<tr>
<td>Adrenal</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Dutton et al. (1997)</td>
</tr>
<tr>
<td>Endometrium</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Aghajanova et al. (2011)</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Balzan et al. (2007)</td>
</tr>
<tr>
<td>Extra-ocular muscle, adipocytes</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Bahn et al. (1998), Valyasevi et al. (1999)</td>
</tr>
<tr>
<td>Kidney</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Dutton et al. (1997), Sellitti et al. (2000)</td>
</tr>
<tr>
<td>Liver</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Zhang et al. (2009)</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Chabaud and Lisitsky (1977), Coutelier et al. (1990)</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Prummel et al. (2003), Theodoropoulou et al. (2000)</td>
</tr>
<tr>
<td>Hair follicles</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Bodo et al. (2009)</td>
</tr>
<tr>
<td>Thymus</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Murakami et al. (1996), Dutton et al. (1997)</td>
</tr>
<tr>
<td>Vascular smooth muscle</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Tian et al. (2014)</td>
</tr>
</tbody>
</table>

*Detected by immunohistochemistry, Western blot or ligand-binding assays. *Assessed by increased cyclic AMP production/p70 S6 kinase or Na/K ATPase in response to TSH stimulation in vitro.

–, not reported.
Importantly, they showed that absence of TSH due to suppression from exogenous hyperthyroidism does not reduce TSHR mRNA. These data support the observations by Shuppert and coworkers (Shuppert et al. 1996) from human tissues that TSHR mRNA is not reduced in the presence of chronic stimulation by thyroid-stimulating autoantibodies and from Maenhaut and coworkers (Maenhaut et al. 1992) in dogs, confirming not only that TSHR is important in thyrocyte growth but also that TSHR gene transcription stably continues both in the presence and absence of its ligand. This contrasts with NIS gene and protein expression, which are affected by cellular signaling from iodine and TSH (Dohán et al. 2003).

TSHR stimulation and thyroid growth

Human disease states of chronic TSH stimulation provide in vivo models of TSHR-mediated thyroid growth, as seen in TSH-secreting pituitary adenomas, and Graves’ disease (where TSHR stimulation occurs by thyroid stimulatory immunoglobulins (TSI) binding to TSHR). Both conditions are characterized by pathological thyroid enlargement, seen in 77% and 93%, respectively (Hegedus et al. 1983, Beck-Pecco et al. 2009). Additionally, chronic exposure to TSI has been associated with increased disease-specific mortality in thyroid cancer in some, but not all, studies (Belfiore et al. 1990, Pellegriti et al. 2013).

Recently, multiple large cohort studies have found that increased levels of serum TSH are associated with increased subsequent risk of thyroid cancer (Nieto & Boelaert 2016). The largest study, recruiting 10,178 patients presenting with nodular thyroid disease for fine needle aspiration (FNA) biopsy, found an increasing odds ratio for papillary thyroid cancer (PTC) with incremental increases of TSH within the reference range of 0.4–3.4 IU/L (Fiore et al. 2009). Both higher pathological stage of the primary tumor and the increased incidence of nodal metastases were significantly associated with higher baseline TSH levels. In this study, level of TSH, not autoantibody status, was shown to be an independent variable in predicting malignancy.

Further, several studies have now shown the importance of TSHR signaling as part of the oncogenic pathway, particularly in tumors containing mutations in B-Raf proto-oncogene (BRAF). Franco and coworkers (Franco et al. 2011) showed in mice that BRAF^{V600E} mutations were only oncogenic in the presence of a TSHR stimulatory pathway. This finding was confirmed by Kim and coworkers (Kim et al. 2014) showing that TSH signaling overcomes senescence induced by BRAF^{V600E} mutations in cell culture. Similarly, Lu and coworkers (Lu et al. 2010) used a TSHR-knockout mouse model of follicular thyroid cancer (FTC) to show that TSHR-mediated growth signaling is required for thyroid cancer to metastasize, but only in the presence of additional oncogenic mutations.

Suppressed TSH and reduced progression of thyroid cancer

A correlation between a hyperthyroid state and reduced thyroid cancer growth was noted in the 1930s by the Australian surgeon Dunhill (1937). However, it was not until the 1950s that other surgeons, notably George Crile Jr, began to widely advocate the practice of levothyroxine therapy to reduce the size of thyroid cancer metastases (Hurley 2011). Subsequently, multiple large studies, including a meta-analysis (McGriff et al. 2002), have confirmed that levothyroxine-induced suppression of TSH is associated with reduced growth of thyroid cancers. Key studies are reviewed below.

Mazzaferrri and Jhing (1994) prospectively followed 1355 patients with treated DTC. After 30 years, the rate of recurrence for patients treated with levothyroxine was 30%, compared to 40% in untreated patients. Baseline characteristics of these subgroups, reasons for treatment and degree of suppression of TSH were not reported. Pujol and coworkers (Pujol et al. 1996) retrospectively compared a group of 18 patients with stable TSH <0.05 IU/L with a group of 15 patients with stable TSH >1 IU/L after thyroidectomy for DTC. Baseline characteristics were similar. Median relapse-free survival was twice as long in the suppressed TSH group (21.6 vs 9.3 years), with significantly fewer relapses over this period (1 vs 6 relapses). Cooper and coworkers (Cooper et al. 1998) followed 617 DTC patients from a thyroid cancer registry for median of 4.5 years, with patients grouped according to mean of measured TSH levels. In patients with advanced stage disease at diagnosis, greater TSH suppression was associated with higher rates of progression-free survival. Finally, Jonklaas and coworkers (Jonklaas et al. 2006) followed 2936 DTC patients from a multi-institutional registry. Patients with AJCC-TNM5 Stage 2 or higher disease had higher rates of overall survival with TSH levels below the reference range, with increased degrees of TSH suppression correlating with higher overall survival in Stages III and IV disease.
TSHR expression in in vitro models of thyroid cancer

Although cell lines have represented an attractive model for cancer research for decades, it is increasingly understood that due to mutation and selection pressures within culture media, these cells commonly dedifferentiate. Several independent analyses of commonly studied thyroid cancer cell lines confirm that these cell lines have largely ceased to express markers of thyrocyte differentiation, and more closely represent anaplastic thyroid cancers than DTC (Meireles et al. 2007, van Staveren et al. 2007, Pilli et al. 2009). This is particularly true of TSHR expression, which is downregulated early in monolayer culture due to disruption of follicular architecture and loss of apical–basal polarity (Williams & Wynford-Thomas 1997). In a recent review, Pilli and coworkers (Pilli et al. 2009) note that TSHR expression was not detected in any of a number of commonly studied cell lines. There are conflicting data regarding TSHR expression in the FTC-133 cell line (originating from a lymph node metastases of a differentiated human follicular thyroid cancer), with some authors demonstrating mRNA expression (D’Agostino et al. 2014) and TSH ligand binding (Paolino et al. 2014), which may represent heterogeneity within this cell line between laboratories. Additionally, there is conflicting evidence for TSHR expression in the BCPAP cell line (derived from a poorly differentiated PTC) (Pilli et al. 2009, D’Agostino et al. 2014, Dotan et al. 2016). Similarly, PTC cells grown in thyrosphere culture lack expression of thyroid-specific proteins, and cells fail to produce cAMP in response to TSH stimulation (Malaguarnera et al. 2011, Giani et al. 2015). The cell line XTC-UC1, derived from a metastatic Hurthle cell carcinoma, appeared to retain TSHR expression as well as other markers of differentiation (Zielke et al. 1998, Meireles et al. 2007), however, is no longer widely available. Consequently, cells stably transfected with TSHR are commonly used for in vitro targeting studies where reliable TSHR expression is desired.

TSHR expression in primary thyroid tumors

After seminal work by Ichikawa and coworkers (Ichikawa et al. 1976), robust evidence obtained over four decades supports the continued expression of TSHR in the majority of DTC, based on studies using ligand binding, mRNA detection using Western blotting or PCR and protein immunohistochemistry (IHC) (Table 2). Although TSHR mRNA and/or protein can be detected in over 90% of PTC and FTC, the relative expression of TSHR in different tumors is highly variable, both in terms of pattern and intensity of staining by IHC, and in the semi-quantitative analysis of mRNA recovery (Table 3).

Table 2 Evidence for TSHR expression in primary thyroid tumors and metastases.

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>TSHR expression in primary tumors</th>
<th>TSHR expression in lymph node metastases*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PTC n</td>
<td>FTC n</td>
</tr>
<tr>
<td>Carayon et al. 1980</td>
<td>Ligand binding</td>
<td>6/6</td>
<td>100</td>
</tr>
<tr>
<td>Clark et al. 1983</td>
<td>Ligand binding</td>
<td>10/10</td>
<td>100</td>
</tr>
<tr>
<td>Brabant et al. 1991</td>
<td>mRNA</td>
<td>8/8</td>
<td>100</td>
</tr>
<tr>
<td>Ohta et al. 1991</td>
<td>mRNA</td>
<td>3/3</td>
<td>100</td>
</tr>
<tr>
<td>Hoang-Vu et al. 1992</td>
<td>mRNA</td>
<td>19/20</td>
<td>95</td>
</tr>
<tr>
<td>Shi et al. 1993</td>
<td>mRNA</td>
<td>13/20</td>
<td>65</td>
</tr>
<tr>
<td>Elisei et al. 1994</td>
<td>mRNA</td>
<td>16/16</td>
<td>100</td>
</tr>
<tr>
<td>Arturi et al. 1997</td>
<td>mRNA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lazar et al. 1999</td>
<td>mRNA</td>
<td>38/38</td>
<td>100</td>
</tr>
<tr>
<td>Tanaka et al. 2000</td>
<td>mRNA</td>
<td>31/31</td>
<td>100</td>
</tr>
<tr>
<td>Park et al. 2000</td>
<td>mRNA</td>
<td>23/23</td>
<td>100</td>
</tr>
<tr>
<td>Wang et al. 2011</td>
<td>mRNA</td>
<td>31/32</td>
<td>97</td>
</tr>
<tr>
<td>Wang et al. 2011</td>
<td>IHC, frozen</td>
<td>32/32</td>
<td>100</td>
</tr>
<tr>
<td>Tanaka et al. 1997</td>
<td>IHC, frozen</td>
<td>21/21</td>
<td>100</td>
</tr>
<tr>
<td>Gerard et al. 2003</td>
<td>IHC, FFPE</td>
<td>16/16</td>
<td>100</td>
</tr>
<tr>
<td>Matsumoto et al. 2008</td>
<td>IHC, FFPE</td>
<td>23/23</td>
<td>100</td>
</tr>
<tr>
<td>So et al. 2012</td>
<td>IHC, FFPE</td>
<td>18/20</td>
<td>90</td>
</tr>
<tr>
<td>Lin et al. 2016</td>
<td>IHC</td>
<td>37/46</td>
<td>80</td>
</tr>
<tr>
<td>Liu et al. 2016</td>
<td>IHC</td>
<td>102/150</td>
<td>68</td>
</tr>
</tbody>
</table>

*Data from Elisei et al. included 2 local (non-lymph node) recurrences. Location of metastases was not reported by Tanaka et al. or Gerard et al. ←, data for PTC and FTC grouped together; dash, no data; FFPE, formalin fixed paraffin embedded; frozen, frozen tissue; IHC, immunohistochemistry.
Sheils and Sweeney (1999) used PCR to semi-quantitatively study mRNA extracted from 90 formalin-fixed paraffin-embedded (FFPE) thyroid tumors, expressed as a ratio of TSHR mRNA to the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and stratified by tumor type and degree of differentiation. Although TSHR mRNA was detected in all tumors, they found a significant positive correlation between degree of differentiation and TSHR expression (Fig. 1). Recovery of TSHR mRNA from medullary thyroid cancer (MTC) would not usually be expected given the neuroendocrine origin of these cells and could suggest contamination of samples from surrounding normal thyroid tissue; however, the finding is consistent with other studies suggesting MTC may in fact express the TSHR (Elisei et al. 1994).

Tanaka and coworkers (Tanaka et al. 1997) studied TSHR protein expression in 21 PTCs (18 well differentiated) and 2 FTCs (both well differentiated) using IHC. They compared receptor immunostaining intensity and distribution to surrounding thyroid tissue. They found that intensity of staining for TSHR was weaker in 43%, similar in 30% and increased in 17% of tumors, with TSHR intensity reported as homogenous in 57% and heterogenous in 43%. Tumors with weaker TSHR staining were more likely to have an aggressive clinical phenotype.

In most studies, no TSHR expression was detected in anaplastic thyroid cancer (ATC), which is consistent with the expected loss of differentiation in this phenotype (Table 2).

TSHR expression in thyroid cancer metastases

There is a paucity of data regarding TSHR expression in thyroid cancer metastases. As is evident from Tables 2 and 3, the majority of studies of TSHR mRNA expression or TSHR protein levels have focused on primary thyroid tumors, with several studies including occasional metastases in their cohort, almost exclusively from neck lymph nodes. The largest and only systematic study of TSHR expression in DTC metastases is from So and coworkers (So et al. 2012), who examined using immunohistochemistry, the specific instance of subclinical lymph node metastases from papillary microcarcinoma, using 20 primary tumors and 52 associated subclinical central compartment metastases. They demonstrated that in their cohort, 90% of primary tumors and 75% of metastatic nodes stained positive for TSHR, with concordance between primary

<table>
<thead>
<tr>
<th>Author</th>
<th>Method</th>
<th>Tissue</th>
<th>Increased</th>
<th>%</th>
<th>Similar</th>
<th>%</th>
<th>Reduced</th>
<th>%</th>
<th>Absent</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary DTC</td>
<td></td>
<td></td>
<td>1/10</td>
<td>10</td>
<td>2/10</td>
<td>20</td>
<td>5/10</td>
<td>50</td>
<td>2/10</td>
<td>20</td>
</tr>
<tr>
<td>Carayon et al. 1980</td>
<td>Ligand binding</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark et al. 1983</td>
<td>Ligand binding</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brabant et al. 1991</td>
<td>mRNA, frozen</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shi et al. 1993</td>
<td>mRNA, frozen</td>
<td>MNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaka et al. 1997</td>
<td>IHC, frozen</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheils et al. 1999</td>
<td>mRNA, FFPE</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matsumoto et al. 2008</td>
<td>mRNA/FFPE</td>
<td>Relative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. 2011</td>
<td>IHC, FFPE</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>So et al. 2012</td>
<td>IHC, FFPE</td>
<td>Primary tumour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Relative expression of TSHR in primary and metastatic DTC.

Figure 1

Box (25–75%) and whisker (5–95%) plot of TSHR mRNA expression by tumor type and differentiation. Redrawn with permission from data in Sheils and coworkers (Sheils et al. 1999). TSHR mRNA expressed as a ratio of the housekeeping gene GAPDH.
tumor and metastases demonstrated in 85% of cases. Intensity of staining was weaker in metastases than that in primary tumor in 44% of cases and similar or stronger in 56%.

Arturi and coworkers (Arturi et al. 1997) used RT-PCR to study FNAs of enlarged neck lymph nodes from 27 patients with predominant PTC. In the 26 aspirates with adequate samples, TSHR mRNA was detected in all specimens. No details of patient or tumor characteristics were provided.

Evidence for persistent functional TSHR expression in thyroid cancer metastases can be inferred from detecting increased thyroglobulin production in response to TSH stimulation, as it occurs in preparation for radioiodine ablation in the context of known residual disease after thyroidectomy. Lippi and coworkers (Lippi et al. 2001) studied 12 patients with metastatic or locally invasive FTC (n=10) or PTC (n=2). In the 9 patients for whom data are available, thyroglobulin rose by a median of 8.4-fold (range 1.3–29×) after TSH stimulation. Luster and coworkers (Luster et al. 2000) report radioiodine treatment in 11 patients with advanced recurrent or residual DTC. Nine of 11 patients had previous radioiodine therapy (median 5 treatments). Ten of 11 patients had a rise in thyroglobulin after treatment with rhTSH (median 2.4×baseline, range 1.2–59.1). Jarzab and coworkers (Jarzab et al. 2003) studied administration of rhTSH in 54 patients with either locoregional or distant metastatic DTC. Fifty patients had received prior radioiodine ablation. Median serum thyroglobulin concentration increased 3.8-fold from baseline to day 6 after rhTSH. Individual patient data were not reported.

In a review of the 11 largest studies of rhTSH-assisted treatment of residual or recurrent DTC (124 patients), Luster and coworkers (Luster et al. 2005) found that serum thyroglobulin increased in response to rhTSH in at least 67% of patients for whom data were recorded. This figure is similar to the 75% prevalence of TSHR expression reported by So and coworkers (So et al. 2012) in papillary microcarcinoma and strongly suggests that TSHR expression is preserved in the majority of clinically significant DTC metastases and persists despite previous radioiodine exposure in the majority of cases. Importantly, this 67% is likely to underestimate actual TSHR expression in clinically significant metastases, both because these case series predominantly included patients with longstanding and advanced metastatic disease and because the surrogate outcome measure (thyroglobulin rise) relies on an intact multistep signaling cascade from TSHR to thyroglobulin production for a positive result.

Persistence of TSHR expression in the setting of loss of other differentiation markers

TSHR expression in DTC has been compared to the expression of other thyroidal markers of differentiation. Several studies have found that TSHR expression closely parallels other markers of differentiation, such as thyroglobulin and thyroperoxidase (Hoang-Vu et al. 1992, Elisei et al. 1994, Park et al. 2000). However, evidence from a number of studies of resected thyroid tissue suggests that TSHR is more persistently expressed than other differentiation markers, including NIS and thyroglobulin proteins (Filetti et al. 1999, Lazar et al. 1999, Gerard et al. 2003), indicating not only that TSHR may remain an important signaling pathway for cellular growth but also its utility as a conserved therapeutic target. Further in vivo evidence of continued TSHR expression in the absence of NIS is provided by a study of 63 patients with metastatic DTC, and no radioactive iodine uptake on whole body scan, who underwent 18F-fludeoxyglucose positron emission tomography (18F-FDG-PET) both under basal conditions and after rhTSH stimulation (Leboulleux et al. 2009). This study found that the sensitivity of FDG-PET was significantly increased after rhTSH stimulation on a per lesion basis (95% vs 81%), suggesting that these lesions continued to express TSHR in the absence of the ability to concentrate radioiodine.

Current therapeutic targeting of TSHR in DTC

Firstly, as discussed previously, pharmacological TSH suppression with exogenous levothyroxine has been a mainstay of clinical DTC management for decades. However, the most recent guidelines of the American Thyroid Association now support a more individualized approach to TSH suppression, based on the likelihood of progressive residual disease and the risks associated with systemic hyperthyroidism (Haugen et al. 2016), better reflecting the paucity of evidence for benefit in low-risk patients. The long-term utility of TSH-suppressive therapy is limited in part by its tumoristatic, not tumoricidal, efficacy, although a survival benefit has been shown in high-risk patients (Jonklaas et al. 2006). However, in patients at lower risk of recurrence, the adverse effects of hyperthyroidism, including accelerated bone loss resulting in osteoporosis, and cardiac side effects, including atrial fibrillation, remain important caveats to universal therapy.
Secondly, TSHR-mediated upregulation of NIS expression is routinely exploited in preparation for ablative radioiodine therapy, either with endogenous TSH stimulation by thyroxine withdrawal or pharmacologically with rhTSH. In clinical studies, expression of TSHR has been shown to correlate with the degree of iodine trapping (Edmonds et al. 1977), and with efficacy of ablation (Fallahi et al. et al. 2012). Further, both positive and negative regulation of NIS mRNA in response to TSHR stimulation has been demonstrated in human thyroid cells (Saito et al. 1997, Bruno et al. 2005). Interestingly, TSHR stimulation also increases the sensitivity of \(^{18}\)F-FDG-PET imaging in the detection of residual metastatic disease, again suggesting that TSHR stimulation increases mitotic activity and glucose utilization within malignant thyrocytes (Leboulleux et al. 2009).

Novel theranostic exploitation of TSHR

Thus far, key characteristics have been identified that establish the TSHR as an attractive therapeutic target in DTC, namely its pivotal role in growth signaling, and its persistence as an expressed surface protein until late stages of de-differentiation. Additionally, the relative specificity of TSHR as a marker on thyroid tissue makes it an attractive potential target for novel theranostic and therapeutic agents. Over the last decade, there have been several exciting developments targeting TSHR in diagnosis or treatment of thyroid malignancies (Fig. 2).

TSHR as a theranostic target for drug delivery

New modalities for the localization and treatment of metastatic DTC are required, especially for tumors that are not cured by radioiodine. Although the majority of DTC has a favorable prognosis, up to 15% of cases do not respond completely to radioiodine ablation, including 4% that exhibit no tumor reduction or progressive disease (Sciuto et al. 2009). In cases that no longer concentrate radioiodine, the twin utility of radioiodine as a true theranostic agent (a modality with both diagnostic and therapeutic utility) is absent. Localization of recurrent disease is then reliant on structural imaging with ultrasound, computed tomography (CT) scan or \(^{18}\)F-FDG-PET, which although sensitive, lacks the specificity of radioiodine avidity to confirm metastatic disease. Additionally, small molecule kinase inhibitors, which have surpassed traditional cytotoxics as first-line treatment for progressive radioiodine-resistant DTC, are cytostatic rather than tumoricidal, and thus, at best can prolong...
progression-free survival rather than offer a chance of cure (Haugen et al. 2016). In addition, the toxicities of such agents preclude widespread use.

Late last century, Mayo Clinic Endocrinologist John Morris (1997) suggested that TSHR may be a suitable receptor for novel targeted therapies to thyroid cancers, although identified that ‘no direct data toward this goal have appeared in the literature’. Although not widely cited, this article defines what has become an increasingly relevant and potentially transformative field.

An early publication by Signore’s laboratory in Rome examined radiolabeled rhTSH (either with 123I or 125I) as a potential imaging tracer for detection of thyroid cancer metastases in a nude-mouse xenograft tumor model, demonstrating focal increase in activity at sites of tumor (Corsetti et al. 2004). A later study similarly examined Tc99m-labeled rhTSH injected into CD-1 xenograft mice, and a dog with PTC, and demonstrated focal uptake of radioisotope to TSHR-positive cells (Galli et al. 2014).

The field of theranostics in cancer therapy has rapidly expanded over the past decade, seeking the ‘holy grail’ of delivery of significant concentrations of drugs to target tissues (either a chemotherapeutic agent or imaging tracer) with high specificity and minimal off-target effects, with the goals of increasing therapeutic index (Sercombe et al. 2015). Nanoliposomes offer a well-studied and attractive model for drug delivery and can deliver large payloads per particle. Organ-specific targeting and immune system evasion can be modulated by molecules embedded in the lipid bilayer (Sercombe et al. 2015).

Paolino and coworkers (Paolino et al. 2014) constructed nanoliposomes coated with fragments of TSH. They demonstrated competitive binding to TSHR in vitro, and 3-fold selectivity in localization to thyroid tissue in Wistar rats in vivo. TSHR-targeted nanoliposomes loaded with the chemotherapeutic agent gemcitabine had higher efficacy against the thyroid cancer cell line FTC-133 in vitro than non-targeted liposomal gemcitabine and free gemcitabine. Finally, in a xenograft model, TSHR-targeted gemcitabine nanoliposomes resulted in greater reduction of FTC-133 tumor mass over 15 days of therapy than non-targeted gemcitabine liposomes. A similar study the following year confirmed these results using cisplatin (Gao et al. 2015). These studies provide in vivo models to investigate the paradigm of TSHR-targeted theranostics, as liposomes can be readily adapted to deliver either a diagnostic or therapeutic load.

This paradigm was further extended by Dotan and coworkers (Dotan et al. 2016) using bio-affinity-functionalized carbon-walled nanotubes targeted with either antibodies against TSHR or rhTSH. Such nanotubes are designed to convert electromagnetic energy to thermal energy, and thus, deliver a cytotoxic local thermal load when stimulated by an external near-infrared light source. In vitro data demonstrated specific cytotoxicity against TSHR-expressing cells from infrared-stimulated nanotubes targeted using two commercially available antibodies against TSHR compared to controls, with similar findings using TSH and rhTSH as targeting ligands. Targeting using rhTSH and TSH resulted in greater cytotoxicity than targeting using TSHR antibody. Although this study again provides in vitro evidence for TSHR as a specific theranostic target for thyrocytes, it is unique in suggesting a further method of localizing cytotoxicity using an external infrared light source. This additional external ‘targeting’ may eliminate off-target cytotoxicity that may be conferred from cytotoxic laden nanoliposomes through non-specific binding, clearance of liposomes in the reticulo-endothelial system or low-density binding to non-thyroidal TSHR.

Small-molecule antagonists of TSHR

Currently, inhibition of TSHR-mediated growth signaling is achieved by pharmacologic suppression of endogenous TSH, with resultant systemic hyperthyroidism. A better system would be a pharmacological antagonist of TSHR, permitting inhibition of thyroid cancer growth while avoiding systemic side effects that limit current widespread use of pharmacologically induced hyperthyroidism. Such small-molecule antagonists of TSHR have significant parallel interest in the treatment of Graves’ disease, where stimulatory autoantibodies against TSHR induce marked hyperthyroidism. Davies and Latif (2015), in their recent appraisal of this issue, identify several molecules that have been trialed over the last decade. To date, however, no molecule has been able to achieve sufficient specificity in vivo to substantially inhibit TSHR signaling (inhibition of cAMP production in orbital fibroblasts was 50% in one study (Neumann et al. 2012)).

Areas for future research

The described advances suggest a future horizon of targeted therapies for thyroid cancer, where a patient’s individual tumor characteristics, such as the surface expression of proteins, can be exploited for selective drug delivery. However, there remain significant obstacles to final clinical translation of these targeted therapies. Additionally, there are several fundamental questions regarding TSHR
targeting in metastatic DTC that remain unanswered. Firstly, although evidence for TSHR expression on DTC metastases is compelling, it is largely indirect. The density of TSHR expression on metastatic lesions is not well studied, and whether TSHR expression would be sufficient for binding of targeted ligands is not known. Secondly, although TSHR mRNA and TSHR protein have been detected in a variety of tissues, our knowledge of the functional significance of these extrathyroidal TSHR is still in its infancy. Indeed, the density of TSHR expression, and whether non-thyroidal TSHR would bind TSHR-targeted therapies in any significant quantity, would need to be carefully studied, especially in the setting of delivery of cytotoxic therapies. Finally, although there is much interest in redifferentiation therapies for thyroid cancer metastases to upregulate NIS expression, little is known about whether TSHR expression could be upregulated in DTC in a similar manner, and whether such therapies may enhance current or future treatments.

Conclusions

Although our understanding of the role of the TSHR as a target in thyroid cancer has progressed significantly since the astute clinical observations of the effects of levothyroxine on PTC in the 1930s, our therapeutic abilities to manipulate this system are largely unchanged over several decades. The era of personalized medicine and targeted therapy has cast new light on the TSHR as a potential theranostic target in metastatic DTC. Although promising advances have been made in the last decade, the TSHR invites further study and the possibility of new treatment paradigms for metastatic, radioiodine-resistant DTC.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding

This research was supported by a Hunter New England Local Health District Clinical Research Fellowship, and an AVANT Clinical Research Scholarship (to C R).

References

Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren B-M, Sparre LS & Hovatta O 2011 Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology. Fertility and Sterility 95 230–237.e232.

Basseti JH & Williams GR 2016 Role of thyroid hormones in skeletal development and bone maintenance. Endocrine Reviews 37 135–187. (doi:10.1210/er.2015-1106)

Cooper DS, Specker B, Ho M, Spelting M, Ladenson PW, Ross DS, Ain KB, Bigos ST, Brierley JD, Haugeen GR, et al. 1998 Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment...

Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, Cooper DS, Haugen BR, Ladenson PW, Magner J, et al. 2006 Outcomes of patients with differentiated thyroid carcinoma following initial therapy. *Thyroid* **16** 1229–1242. (doi:10.1089/thy.2006.16.1229)

Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE & Roger PP 2001 Regulation of thyroid cell proliferation by TSH and other

Liu TR, Su X, Qiu WS, Chen WC, Men QQ, Zou L, Li ZQ, Fu XY & Yang AK 2016 Thyroid-stimulating hormone receptor affects metastasis and prognosis in papillary thyroid carcinoma. European Review for Medical and Pharmacological Science 20 3582–3591.

Neto HR & Boelaert K 2016 Thyroid stimulating hormone in thyroid cancer: does it matter? Endocrine-Related Cancer 23 T109–T121. (doi:10.1530/ERC-16-0328)

Mazzaferrti EL & Jhiang SM 1994 Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. American Journal of Medicine 97 418–428. (doi:10.1016/0002-9343(94)90321-2)

Received in final form 14 March 2017
Accepted 28 March 2017
Accepted Preprint published online 28 March 2017

http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-17-0010
© 2017 Society for Endocrinology
Printed in Great Britain
Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 09/15/2023 08:18:08AM via free access