Obesity and menopause modify the epigenomic profile of breast cancer

Ana B Crujeiras, Angel Diaz-Lagares, Olafur A Stefansson, Manuel Macias-Gonzalez, Juan Sandoval, Juan Cueva, Rafael Lopez-Lopez, Sebastian Moran, Jon G Jonasson, Laufey Tryggvadottir, Elínborg Olafsdottir, Francisco J Tinahones, Marcos C Carreira, Felipe F Casanueva, and Manel Esteller

Abstract

Obesity is a high risk factor for breast cancer. This relationship could be marked by a specific methylome. The current work was aimed to explore the impact of obesity and menopausal status on variation in breast cancer methylomes. Data from Infinium 450K array-based methylomes of 64 breast tumors were coupled with information on BMI and menopausal status. Additionally, DNA methylation results were validated in 18 non-tumor and 81 tumor breast samples. Breast tumors arising in either pre- or postmenopausal women stratified by BMI or menopausal status alone were not associated with a specific DNA methylation pattern. Intriguingly, the DNA methylation pattern identified in association with the high-risk group (postmenopausal women with high BMI (>25) and premenopausal women with normal or low BMI <25) exclusively characterized by hypermethylation of 1287 CpG sites as compared with the low-risk group. These CpG sites included the promoter region of fourteen protein-coding genes of which CpG methylation over the ZNF577 promoter region represents the top scoring associated event. In an independent cohort, the ZNF577 promoter methylation remained statistically significant in association with the high-risk group. Additionally, the impact of ZNF577 promoter methylation on mRNA expression levels was demonstrated in breast cancer cell lines after treatment with a demethylating agent (5-azacytidine). In conclusion, the epigenome of breast tumors is affected by a complex interaction between BMI and menopausal status. The ZNF577 methylation quantification is clearly relevant for the development of novel biomarkers of precision therapy in breast cancer.

Key Words
- breast cancer
- DNA methylation
- epigenomics
- obesity
- 450k methylation array
Introduction

The prevalence of obesity and its associated co-disorders is rapidly increasing worldwide. Nowadays, these diseases are considered to be pandemic non-communicable diseases and are a major challenge for the health care system (Seidell & Halberstadt 2015). Breast cancer, the leading cause of cancer diagnosis in women, is among the co-disorders associated with obesity. Overweight or obesity is a known risk factor for breast cancer (Lorincz & Sukumar 2006), especially in postmenopausal females (Crujeiras et al. 2011, van Gemert et al. 2015). In contrast, being overweight or obese has no effect, or even a small protective effect, in premenopausal women. For every 5-unit increase in body mass index (BMI), the risk of developing postmenopausal breast cancer increases by 12%, and elevated BMI is associated with a protective effect against the development of breast cancer in premenopausal women (Renehan et al. 2008). Notably, despite epidemiological and clinical evidence, the mechanisms that underlie the association between obesity and breast cancer risk are not completely understood. Obesity-induced inflammation promoted by adipose tissue dysfunction was proposed as an important link between obesity and cancer (Crujeiras et al. 2013, Howe et al. 2013).

Together with an imbalance in energy homeostasis, obesity is characterized by a state of chronic low-grade inflammation that promotes oxidative stress due to dysfunction in adipose tissue and alterations in adipocyte-derived hormone secretion and cytokine synthesis (Zou & Shao 2008). Hormonal and inflammatory mediators can induce and maintain epigenetic regulation (Milagro et al. 2013, Yara et al. 2013). Frequent epigenetic modifications, such as DNA hypo- and hypermethylation and histone modifications, have been observed in several types of tumors, including breast cancer (Heyn et al. 2013, Stefansson & Esteller 2013). This DNA methylation pattern is associated with an increased risk of cancer disease, a poor prognosis and a decreased likelihood of relapse-free survival (Hill et al. 2011). On the other hand, DNA methylation have also been found to be associated with obesity itself in a genome-wide DNA methylation analysis (Dick et al. 2014) and in analysis of specific genes (Milagro et al. 2012). Therefore, obesity could contribute to malignancies of the breast by altering the microenvironment such that it favors epigenetic changes and increases the susceptibility for inducing and maintaining a disease state (Crujeiras & Casanueva 2015). Because epigenetic modifications are dynamic, reversible and change in response to dietary patterns, physical activity and weight loss, epigenetic markers related to obesity may represent therapeutic targets for the prevention of obesity-related disorders, including breast cancer. In this regard, previous studies have recently evaluated the associations between body mass and the methylation of a single gene or a panel of cancer-related genes in breast tumors (Tao et al. 2011, Naushad et al. 2014, Hair et al. 2015, McCullough et al. 2015). After these pioneer studies, examining the epigenome-wide association of breast cancer that depends on adiposity and the menopausal status could add novel insight to the epigenetic regulation of the obesity and breast cancer relationship.

The aim of the current work was to explore the effects of obesity and menopausal status on the DNA methylation profile of breast tumors using a genome-wide DNA methylation approach and to identify an epigenetic signature of breast cancer taking into account the adiposity and menopausal state.

Subjects and methods

Study participants

A total of one hundred forty-five women diagnosed with histologically confirmed invasive breast cancer and eighteen healthy women were included in the current study (Table 1 and Fig. 1).

The discovery cohort was composed of breast tumor tissues (frozen tissues; n=64) obtained from the Department of Pathology, University Hospital, Iceland. Patient information associated with the breast cancer samples was obtained from the population-based Icelandic Cancer Registry. Informed consent was obtained from all patients, and all analyses were performed in accordance with the Icelandic Data Protection Commission (200650307) and Bioethics Committee (VSNb2006050001/03-16).

The validation cohort consisted of normal breast (n=18) and breast cancer (n=81) human paraffin-embedded (FFPE) tissue blocks from the BioBank Complejo Hospitalario Universitario de Santiago (CHUS) (PT13/0010/0068), integrated in the Spanish National Biobanks Network and they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committees (ref 2009/076).

Pre-diagnosis body weight, height, age and menopausal status were retrieved from medical records for all participants in the study. BMI was calculated as weight
in kg divided by the squared height in meters and was further categorized using the World Health Organization (WHO) criteria: normal/under-weight, BMI < 25 kg/m²; overweight, 25 ≤ BMI < 30 kg/m² and obese, BMI ≥ 30 kg/m² (WHO, 2000). Then, patients were classified considering overweight and obese patients in the same group, as obese (BMI > 25 kg/m²) and non-obese (BMI ≤ 25 kg/m²) to evaluate the effect of excess body weight.

DNA preparation and bisulfite conversion

DNA from fresh-frozen (FF) tissue samples was isolated using a standard phenol-chloroform/proteinase-k protocol, whereas paraffin samples (FFPE) (10 sections of 14 μm) were processed using the E.Z.N.A. FFPE DNA kit (Omega Bio-Tek, Norcross, GA, USA), with a xylene wash to remove the paraffin. For each sample of tumor tissue, subsequent sections were stained with hematoxylin and eosin for histologic confirmation of the presence (>50%) of tumor cells. The obtained DNA was treated with RNase A for 1 h at 45°C. All DNA samples were quantified using the fluorometric method (Quan-iT PicoGreen DsDNA Assay, Life Technologies) and were assessed for purity using a NanoDrop (Thermo Scientific) with 260/280 and 260/230 ratio measurements. The integrity of the FF DNA was verified by electrophoresis in a 1.3% agarose gel. FF DNA (600 ng) and FFPE DNA (300 ng) were processed using the EZ-96 DNA Methylation kit (Zymo Research Corp, Irvine, CA, USA) following the manufacturer’s recommendations for Infinium assays.

DNA methylation analysis

Infinium Human Methylation 450 BeadChip array Microarray-based DNA methylation analysis was conducted with the Infinium Human Methylation 450 BeadChip (450k array). DNA quality checks, bisulfite modification, hybridization, data normalization, statistical filtering and β value calculations were performed as described elsewhere (Sandoval et al. 2011). High-quality DNA samples obtained from breast tumors (discovery cohort, n=64) were selected for bisulfite conversion (Zymo Research; EZ-96 DNA Methylation Kit) and
hybridization to Infinium Human Methylation 450 BeadChips (Illumina) following Illumina’s Infinium HD methylation protocol. The DNA concentration of the quality control sample standards was measured using the PicoGreen method (Invitrogen), coupled with assessments of DNA purity based on the A260/A280 ratio (ranging between 1.75 and 1.95) and the A260/A230 ratio (ranging between 2.00 and 2.20). DNA fragmentation or RNA contamination was analyzed by 1% agarose gel electrophoresis. The Infinium Human Methylation 450 BeadChip provides coverage of >450,000 CpG sites targeting nearly all RefSeq genes (>99%) (Sandoval et al. 2011). The chips were designed to cover coding and non-coding genes without bias against those lacking CpG islands. The design further aimed to cover not only promoter regulatory regions but also CpGs across gene regions to include 5′-untranslated regions (5′ UTRs), the first exons, gene bodies and 3′-untranslated regions (3′-UTRs).

A total of 600 ng from high-quality DNA samples was bisulfite converted. Whole-genome amplification and hybridization were then carried out on the BeadChip, followed by single-base extension and analysis on the HiScan SQ module (Illumina) to assess cytosine methylation states. The annotation of CGIs used the following categorization: (1) shore, for each of the 2-kb sequences flanking a CGI; (2) shelf, for each of the 2-kb sequences next to a shore; and (3) open sea, for DNA not included in any of the previous sequences or in CGIs (Heyn et al. 2012). Transcription start site 200 or transcription start site 1500 indicates the region either 200 or 1500 bp from the transcription start site, respectively.

Pyrosequencing analysis

Pyrosequencing was used to assess selected markers in the validation cohort (n = 98 FFPE breast tumors and n = 19 normal FFPE mammary glands) as previously described (Heyn et al. 2012). The primer sequences used in this analysis were designed using Qiagen’s PyroMark Assay Design 2.0 software to hybridize to CpG-free sites to ensure methylation-independent amplification (details and primer sequences are available in the Supplementary Table 1, see section on supplementary data given at the end of this article). Briefly, PCR was performed using standard conditions with biotinylated primers, and the PyroMark Vacuum Prep Tool (Biotage, Uppsala, Sweden) was used to prepare single-stranded PCR products according to the manufacturer’s instructions. Pyrosequencing reactions and methylation quantification were performed in PyroMark Q96 System, version 2.0.6 (Qiagen) using appropriate reagents and recommended protocols.

Bisulfite genomic sequencing

Methyl Primer Express v1.0 software was used to identify CpG islands and to design specific primers for the ZNF577 methylation analysis (Supplementary Table 1). DNA methylation status was determined using bisulfite genomic sequencing of multiple clones in DNA samples that were previously treated with sodium bisulfite (EZ DNA Methylation Gold Kit, Zymo Research).

Cell lines and treatments for functional analysis

Representative human breast cancer cell lines (MCF7, Hs578T, MDA-MB-468 and MDA-MB-134IV) and normal epithelial breast cell line (MCF10A) from American Type Culture Collection (Manassas, VA) were used to evaluate the DNA methylation and gene expression of ZNF577. Cells were cultured in DMEM containing 10% FBS, penicillin and streptomycin at 37°C and 5% CO2. To restore the expression of DNA-methylated ZNF577, the MCF7 cells were treated with the DNA demethylating agent 5-aza-2′-deoxycytidine (A3656, Sigma) at 5 μM for 72h. All the cell lines were obtained from the American Type Culture Collection (ATCC; Manassas, VA) and were used with passage lower than 15. ATCC authenticates the cell lines routinely following a very strict test that includes short tandem repeat (STR) profiling, karyotyping and cytochrome C oxidase I (COI) testing.

Expression assays by qRT-PCR and RT-PCR

RNA from the cell culture assays was extracted using the Thermo Scientific GeneJet RNA Purification Kit (Thermo Scientific, K0739). The RNA concentrations were measured with a NanoDrop 2000 spectrophotometer (Thermo Scientific). cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with 2 μg of total RNA. qRT-PCR was performed using TaqMan Universal PCR Master Mix, TaqMan Probes (Applied Biosystems) and the Step OnePlus Real-Time PCR System (Applied Biosystems). All experiments were performed in duplicate, and gene expression levels were normalized to those of the housekeeping genes ACTB or GAPDH, depending on the sample. The fold change in gene expression was calculated using the 2^[-ΔΔCt] relative quantitation method according to the manufacturer’s guidelines.
(Applied Biosystems), and data are reported as the geometric mean (S.E.M.).

Statistical analyses

The methylation level of each cytosine was expressed as a β value, which was calculated as the fluorescence intensity ratio of the methylated to the unmethylated versions of the probes. β values ranged between 0 (unmethylated) and 1 (completely methylated) according to a combination of the Cy3 and Cy5 fluorescence intensities. Color balance adjustment and quantile normalization were performed to normalize the samples between the two color channels. β values with a detection P value >0.01 are considered to fall below the minimum intensity and threshold, and these values were consequently removed from further analysis. Approximately 96% of CpG islands were covered, along with regions proximal to CpG islands (‘CpG shores’) and the more distal CpG shelves. Additionally, probes that were localized to the sex chromosomes and those considered to be single nucleotide polymorphisms (SNPs) were filtered out.

Samples were classified in the discovery and validation cohorts according to adiposity and menopausal status. The genome-wide DNA methylation patterns were first compared for tumors from obese and normal-weight patients. Then, the samples were categorized into two risk groups that combined adiposity and menopausal status, based on the epidemiological data that reported a higher risk of breast cancer in obese postmenopausal women compared to obese premenopausal women (Crujeiras et al. 2011). The high-risk group was composed of samples from obese postmenopausal and normal-weight premenopausal women, and the low-risk group was composed of obese premenopausal and normal-weight postmenopausal women.

To identify consistent patterns of differentially methylated CpG sites between obese and normal-weight samples and between the high-risk group and group B, we carried out a univariate permutation-based approach using the SAMr package for R. By this analysis, false discovery rates (FDR) below 5% were considered statistically significant. In addition, we applied a threshold for the significant sites using mean differences between groups, with a minimum change of ±0.10 in β values. Hierarchical cluster analysis of the significant CpGs was performed using the heatmap function in R.

To estimate the enrichment in biological processes, a hypergeometric test was performed on biological processes defined by gene ontology (GO) (Falcon & Gentleman 2007). This analysis detects significant over-representation of GO terms in one of the sets (list of selected genes) with respect to the other for the entire genome. GO terms with an adjusted P value <0.05 were considered significant.

Additionally, the diagnostic efficiency (percent of correctly classified) of the candidate genes differentially methylated was calculated as the percent of agreement by using the receiver-operating characteristic (ROC) curve analysis. These results are often interpreted as negligible efficiency (<20%), minimal (20–40%), moderate (41–60%), good (61–80%) and excellent (>80%).

Results

Characteristics of patients

Among the 64 patients with primary breast cancer included in the discovery cohort, 60.9% were classified as overweight/obese, 39.1% were normal weight and 51.6% were postmenopausal. In the validation cohort, 71.4% patients were classified as overweight/obese, 28.6% were normal weight and 61.2% were postmenopausal. The clinical characteristics of the discovery and validation cohorts are shown in Table 1.

DNA methylation analysis by adiposity and menopausal state

DNA methylation profiling in human breast tumors involving the analysis of approximately 450,000 CpGs were analyzed with respect to BMI and menopausal status. Firstly, tumors arising in obese or overweight (BMI >25) women were compared with those arising in normal weight women (BMI <25). This analysis revealed no statistically significant differences following adjustment for multiple hypothesis testing. Secondly, no significant differences were detected between tumors arising in premenopausal women when compared with tumors arising in postmenopausal women.

Epidemiological studies have consistently identified high BMI (>25) in postmenopausal women as a risk factor for developing breast cancer (Crujeiras et al. 2011). This observation gives reason to specifically determine whether the DNA methylation profiles of tumors arising in these highest-risk women (BMI >25 and postmenopausal) differ from the breast tumors from postmenopausal normal-weight (BMI <25) women in the cohort. However, this analysis did not reveal any significantly associated CpGs after adjustment for multiple hypothesis testing.
Another high-risk group defined on the basis of BMI and menopausal status includes premenopausal women with normal or low BMI (BMI <25). Similarly, tumors arising in this risk group, i.e. in premenopausal women with normal or low BMI, did not differ significantly with respect to normal-weight postmenopausal women. However, when combining together tumors from these two high-risk groups, i.e. postmenopausal women having BMI >25 together with premenopausal women having BMI <25, we detected statistically significant differences involving 1,287 CpGs with FDR <5% corresponding to 624 unique genes (see detailed list in Supplementary Table 2). The differentially methylated CpGs are exclusively characterized as changes towards CpG hypermethylation occurring during tumor development in the high-risk group (Fig. 2A). Notably, these differentially methylated CpG sites between the high- and low-risk groups were mainly located in promoters and CpG islands (Fig. 2B), suggesting the existence of a different methylator phenotype between both risk groups.

The CpG sites representing promoter regions (TSS1500, TSS200, 5' UTR and 1st exon) at CpG islands were selected to investigate biological relevance. This selection yielded 215 CpGs representing 138 unique genes (Supplementary Table 3). The CpGs with the greatest change in DNA methylation (>15%) are listed as representatives of the 215 CpG sites in Table 2.

Additionally, a gene ontology (GO) analysis was performed to determine whether some molecular functions or biological processes were significantly associated with these differentially methylated genes represented by CpGs located in promoter regions and CpG islands. Thus, among the significantly enriched biological processes, the top overrepresented categories were related to the regulation of transcription, signal transduction, the regulation of cell differentiation and proliferation, cell migration and cell cycle regulation (Fig. 2C). Most of the genes (76%) regulated by methylation belonged to a network significantly enriched in protein interactions (P < 0.001), according to STRING analysis (Supplementary Fig. 1).

To identify potentially novel signatures of DNA methylation in the high-risk group, those genes with more than 4 CpG sites located within CpG islands and promoters and a difference in β-values ≥10% were selected (Supplementary Table 3). With these criteria, C17orf64, DUOX1/DUOXA1, ELOVL3, EVX1, POU4F1, TLX3, TOX2 and YOD1 were represented by 4 sites; IQSEC1 and
Validation of candidate genes in an independent cohort

We used pyrosequencing, a technique that is most feasible for studies of patients in hospitals, to evaluate the DNA methylation levels for RASSF1 and ZNF577 in an independent cohort of paraffin samples from breast cancer patients and cancer-free donors (validation cohort; \(N = 81 \) breast tumors and \(N = 18 \) non-tumoral breast tissues; Table 1).

We confirmed significant higher levels of methylation for RASSF1 in tumor samples compared with non-tumoral donors (Supplementary Fig. 2A). When the methylation levels were analyzed in breast tumors according to the
adiposity and menopausal state, no differences were observed in RASSF1 (Supplementary Fig. 2B and C). Regarding ZNF577, the epigenetic regulation in breast tumors has not been previously described. Therefore, first the methylation levels were evaluated by comparing tumor with non-tumoral samples. A significant increase in methylation levels was observed for ZNF577 in tumor compared with non-tumoral samples in both, our cohort (Fig. 3A) and an independent cohort from The Cancer Genome Atlas; TCGA (Supplementary Fig. 3). When the methylation levels were analyzed in breast tumors according to adiposity and menopausal state, ZNF577 exhibited higher methylation levels in postmenopausal obese and premenopausal normal-weight women than in the other cohort groups (Fig. 3B). In fact, the statistical differences observed in the Infinium Human Methylation 450 BeadChip array between the high-risk group and low-risk group were corroborated by pyrosequencing, with statistical significance in ZNF577 methylation levels (Fig. 3C). Notably, the methylation levels of the promoter region of ZNF577 (Fig. 4A) assessed in different breast tumor cell lines by bisulfite genomic sequencing analysis (Fig. 4B) and by the Infinium Human Methylation 450 BeadChip array (Fig. 4C) were inversely correlated with the transcript levels of ZNF577 (Fig. 4D). Moreover, after treating breast cancer cell lines that exhibited ZNF577 hypermethylation with the demethylating agent 5-aza-2'-deoxycytidine, the expression of this gene was significantly restored (Fig. 4E), indicating that DNA methylation has a functional role in the transcriptional control of ZNF577.

Receiver-operating characteristic (ROC) curves were used to evaluate the ability of ZNF577 methylation levels to discriminate tumor from non-tumor as well as high-risk from low-risk patients. The area under the ROC curve (AUC) of ZNF577 methylation levels was 0.93 ($P < 0.001$) for breast tumor detection (Fig. 5A) and 0.69 ($P = 0.008$) to discriminate the high-risk from low-risk group (Fig. 5B).

Discussion

Epigenetic modifications of the genome mediate the response of the organism to environmental pressure. There is a growing body of evidence that demonstrates a relevant role for epigenetic marks in susceptibility...
to obesity and its co-diseases. The results presented herein demonstrate that the impact of obesity on the breast cancer features could be mediated by a specific alteration of the methylation profile, particularly in cases of postmenopausal breast cancer. The epigenome-wide analysis identified 138 genes that exhibited a differential methylation in the promoter region and island and they comprised an epigenetic signature of high-risk breast cancer by including obesity-related postmenopausal and normal weight premenopausal women. Among the identified signature genes, ZNF577 was the most relevant and its differential methylation levels were validated in an independent cohort. In addition, we demonstrate that ZNF577 gene expression is epigenetically regulated. The methylation levels of ZNF577 vary depending on the type of breast cancer cell line. This fact is in agreement with the heterogeneity of primary tumors of breast cancer, which is associated with clinical outcome of disease. Therefore, understanding the function of the methylation pattern of ZNF577 in response to therapy could be relevant to improving management of the disease taking into account adiposity and menopausal state.

Figure 4
DNA methylation-associated silencing of ZNF577 breast cancer. (A) Schematic representation of ZNF577 genomic loci and CpG island. (B) Bisulfite genomic sequencing analysis of ZNF577 CpG island in human breast cancer cell lines and normal breast and lymphocytes as tissue controls. Location of bisulfite genomic sequencing PCR primers (black arrows), CpGs (vertical lines) and the transcriptional start site (grey arrow) are shown. Ten single clones are represented for each sample. Presence of unmethylated or methylated CpGs is indicated by white or black squares, respectively. Red circles represent the location of CpGs detected by the 450k methylation array. (C) ZNF577 methylation levels of breast cancer cell lines analyzed by 450k methylation array. (D) ZNF577 expression levels in methylated or unmethylated human breast cancer cell lines and in normal breast as control by RT-PCR and qRT-PCR. Values were determined by qRT-PCR in triplicates and are expressed as mean (n=3). (E) Restored ZNF577 expression after treatment with DNA demethylating agent 5-aza-2’-deoxycytidine (AZA) in ZNF577 CpG island methylated MCF7 cell line. Values were determined in triplicate by RT-PCR and qRT-PCR of three independent experiments and are expressed as mean ± s.e.m (n=3).
were located in genes involved in several pathways related to carcinogenesis. Some genes previously reported to be differentially methylated in cancer were found among the highest differentially methylated CpGs in promoter regions and CpG islands. For example, among the genes represented by more than 4 CpGs, high methylation levels were observed for TOX2 (Tessema et al. 2012), RASSF1 (Conway et al. 2014), PRKCDBP (Li et al. 2015) and POU4F1 (Faryna et al. 2012). Other genes with increased methylation in the high-risk group were also previously reported as hypermethylated in cancer, such as IQSEC1 (Dmitriev et al. 2012). The dual NADPH oxidases were proposed as potential targets for cancer therapy because their overexpression in many tissues is associated with pre-malignant conditions (Roy et al. 2015). However, in the current work, increased methylation levels were found in CpGs associated with the dual oxidases DUOX/DUOXA1, similar to that observed in lung cancer (Luxen et al. 2008).

On the other hand, genes associated with lipid metabolism and obesity features were observed such as ELOVL3 (Zadravec et al. 2010). Thus, the DNA methylation of the identified genes could represent an epigenetic signature that could be relevant in the personalized management of the breast cancer associated to obesity.

Additionally, we selected RASSF1 and ZNF577 for further validation in an independent cohort among the identified differentially methylated gene signatures of high-risk breast cancer depending on adiposity and menopausal state. RASSF1 a gene characteristically methylated in breast cancer (Conway et al. 2014) and was represented by 5 CpG sites in the current work and ZNF577 was the most represented gene in the differential methylated profile of high-risk group with the highest statistical differences between the groups. According to previous work, RASSF1 exhibited high methylation levels in tumor breast than non-tumor breast tissue. However, the differential methylation pattern in tumor breast tissue according to adiposity and menopausal state was not validated in our independent cohort. Importantly, in this study, increased methylation of ZNF577 was demonstrated for the first time in breast tumors but not in non-malignant breast tissue. Moreover, the methylation profile of ZNF577 observed in obesity-related postmenopausal breast tumors was observed in an independent cohort. Accordingly, the ZNF577 CpG island was previously found to be methylated in 85% to 100% of squamous cell carcinomas of the lung (Rauch et al. 2012), and in polycythemia vera, aberrant methylation of ZNF577 was correlated with differential expression of the ZNF577 gene (Barrio et al. 2011). Likewise, a previous study...
DNA methylation in obesity-related breast cancer

A B Crujeiras et al.

Research

24:7

361

The current work demonstrates the potential of methylation profiles to distinguish subtypes of breast cancer that depend on adiposity and menopausal status. The epigenome of breast tumors is affected by a complex interaction between BMI and menopausal state. Thus, patients with breast cancer associated with the described DNA methylation markers might also receive DNA demethylation agents as co-adjuvant therapy to the standard therapeutic protocol. Although further studies are needed, ZNF577 may be a biomarker of the obesity and menopausal state effect on breast cancer biology and a suitable therapeutic target in precision medicine.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/ERC-16-0565.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by grants from the European Research Council (ERC) grant EPINORC; the Fondo de Investigación Sanitaria (PI14/01012; PI13/00024) research project, and CIBERObn (CBO6/003) from the Instituto de Salud Carlos III (ISCIII)-Subdirección General de Evaluación y Fomento de la Investigación; Fondo Europeo de Desarrollo Regional (FEDER), Spain; the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) and the Health Department of the Xunta de Galicia (GRC2014/034), Spain, as well as Fundación Lilly and Fundación Mapfre. Crujeiras A B was funded by the ISCIII through a research contract ‘Sara Borrell’ (C09/00365). Diaz-Lagares A is funded by the ISCIII through a research contract Rio Hortega (CM14/00067). Macias-Gonzalez M is recipient of the Nicolas Monardes program from the Servicio Andaluz de Salud, Junta de Andalucía, Spain (Grant C-0029-2014). Sandoval J is a ‘Miguel Servet’ researcher. Esteller M is an ICREA Research Professor.

Author's contribution statement
The authors’ responsibilities were as follows: A B C, F F C and M E: Project conception and leadership of overall research plan, writing the first draft of the manuscript and primary responsibility for the final content of the manuscript. A B C, A D L, O A S, J S: Performing the bioinformatics and statistical analysis. A B C and A D L: Bisulfite genomic sequencing and pyrosequencing assessment. M S: Conducting the microarray-based DNA methylation. M C C and A B C: Performing the functional and gene expression analysis. J C, R L-L, J J G, T L, O E: Sampling and clinical data collection. A D L, O A S, J S, M M-G, F J T: Interpretation of the data and critical revision of the manuscript. M E and F F C acquired funding for this study. All authors: Involvement in the writing of the manuscript and approving the final version of this article. None of the authors had a conflict of interest regarding the manuscript.

Received 18 September 2016; accepted 13 January 2017.

© 2017 Society for Endocrinology
Printed in Great Britain
Published by Bioscientifica Ltd.

Downloaded from bioscientifica.com at 08/02/2019 04:45:54 PM via free access
Acknowledgments

Authors thank Maria Amil, Diana García, Carles Arribas and Paula Vieiro for their technical support. We particularly wish to acknowledge the patients and the BioBank Complejo Hospitalario Universitario de Santiago (CHUS) (PT13/01000968) integrated in the Spanish National Biobanks Network, as well as Dr. Beatriz Fernandez and Dr Máximo Fraga for their collaboration.

References

Received in final form 4 April 2017
Accepted 25 April 2017
Accepted Preprint published online 25 April 2017