Incidence and prevalence of multiple endocrine neoplasia 2B in Denmark: a nationwide study

Dear Editor,

Multiple endocrine neoplasia 2B (MEN2B) is an autosomal dominant inherited cancer syndrome associating medullary thyroid carcinoma (MTC), pheochromocytoma (PHEO), ganglioneuromatosis of the aerodigestive tract and facial, ophthalmologic and skeletal abnormalities. MEN2B is caused by the M918T and A883F mutation of the RET proto-oncogene in approximately 95% and <5% of cases, respectively. Only very few other mutations have been reported to cause MEN2B. In approximately 75% of MEN2B patients, mutations occur as de novo (Wells et al. 2015).

The epidemiology of MEN2B is poorly defined. A nationwide study from Northern Ireland reported of three MEN2B patients and 1,824,000 inhabitants alive at April 21, 2012, yielding a point prevalence of 1.65 per million (Znaczko et al. 2014). However, it is unclear if this is representative of larger populations. A German study reported an MEN2B incidence (M918T carriers only) of 1.4 per million live births per year from 1991 to 2000 and estimated that at least half of all German RET carriers were captured (Machens et al. 2013). Meanwhile, the incidence of MEN2B and M918T carriers in a complete population is undisclosed. We conducted a nationwide study of the incidence and prevalence of MEN2B in Denmark from 1941 to 2014.

This retrospective cohort study included 12 unique MEN2B patients identified through the following sources:

1. A nationwide RET cohort containing all patients (n=1,583) RET tested in Denmark from 1994 to 2014 (Mathiesen et al. 2017b). Eight MEN2B patients were identified from this source.
2. An MTC cohort comprising 476 unique MTC patients identified from three nationwide registries: the Danish Thyroid Cancer database (DATHYRCA), the Danish Cancer Registry and the Danish Pathology Register between January 1960 and December 2014. Inclusion criteria were histologically diagnosed MTC or cytologically diagnosed MTC verified by positive staining of calcitonin.

The DATHYRCA database has prospectively registered all patients with thyroid carcinomas in Denmark since January 1996 (Londero et al. 2014). During 1996 the database was retrospectively supplemented with 57 MTC patients diagnosed from 1960 to 1995 and mainly treated at the Department of Oncology, Copenhagen University Hospital. Based on the histology variable (HIST=5) 206 MTC patients were identified from January 1996 to December 2014.

The Danish Cancer Registry has recorded new cancer patients in Denmark since 1943. Recording became mandatory in 1987 (Gjerstorff 2011). Based on the combination of codes (ICD7 topography 1940; 4940; 5940; 6940; 8940; 9940, TOPO1 topography 1939 and MORFO1 morphology 83463; 85101; 85103; 85113; 85123 for the period from 1943 to 1977 and ICD-10 topography DC739 and MORFO3 morphology 83453; 83463; 83473; 85101; 85103; 85123 for the period from 1978 to 2014) 459 MTC patients were recorded from 1943 to December 2014. No MTC patients appeared before 1960.

The Danish Pathology Register has registered diagnosis of pathological specimens in Denmark since September 1968 (www.patobank.dk). Registration became mandatory in 1997. Based on the combination of topographical (T96000; T96010; T96050; T96100; T96200; T96300; T96400; T96500) and morphological SNOMED codes (M85103; M85104; M85106; M85107) 379 MTC patients were identified.

Thus, 263, 459 and 379 MTC patients were found in the DATHYRCA database, the Danish Cancer Registry and the Danish Pathology Register, respectively. Removal of 145 duplicates and 217 triplicates yielded 522 unique MTC patients. Subtraction of those not fulfilling inclusion criteria resulted in 476 patients (474
diagnosed by histology and 2 by cytology). Medical records were available for 407 patients. A review revealed 11 MEN2B patients.

3. A PHEO cohort accounting for 478 unique patients with histologically proven PHEO identified from the Danish Pathology Register between September 1968 and December 2014. Topographical (T93000; T93010; T93020; T93100; T93110; T93120; T93130; T93200; T93300) and morphological SNOMED codes (M87000; M87001; M87003; M87004; M87006; M87007; M87009) were used. Among the 24 patients present in both the PHEO and MTC cohort 20 had MEN2A and four had MEN2B.

4. A nationwide collaboration of endocrinologists from all relevant university hospitals (Copenhagen, Aarhus, Odense and Aalborg). Upon inquiry, each endocrinologist has contributed with all MEN2B patients registered locally. This provided eight MEN2B patients.

5. A systematic literature search performed on October 21, 2016 in the following databases: Cochrane, Embase, PubMed, Scopus and Web of Science with the search term ‘medullary thyroid carcinoma Denmark’ OR ‘medullary thyroid carcinoma Danish OR multiple endocrine neoplasia 2 Denmark OR multiple endocrine neoplasia 2 Danish’. No filters were employed.

A total of 211 citations were found. Removal of seven duplicates and two triplets yielded 200 unique citations, of which 61 had Danish affiliations. Full-text was retrieved for all citations. Among the 61 citations nine reported of Danish MEN2B patients. The reference list of each citation was scrutinized to uncover patients published more than once. If needed an author of the concerned publication was contacted for clarification. Five of the nine citations mentioned a patient reported elsewhere. Two of the remaining four citations reported of patients already identified through the Danish RET cohort. The final two citations described a total of five patients (Rasmussen 1980, Emmertsen 1984). The author of each citation was contacted and four of the five MEN2B patients were identified.

6. A four-generation pedigree was created for all 10 MEN2B index patients using the Civil Registration System (www.cpr.dk) and the Danish National Archives (www.sa.dk/en/). Two additional MEN2B patients were ascertained.

Data were collected from medical records and when insufficient supplemented by previous publications of the patients.

Point prevalence was calculated as the number MEN2B patients alive at January 1 divided by the number of inhabitants alive at the same date. Incidence was calculated as the number of MEN2B patients born in each decade divided by the number of live births in Denmark for the respective decade. Patients born between 1941 and 1970 all died before RET testing was available and were solely diagnosed by the MEN2B phenotype. Patients born between 1971 and 2014 were diagnosed both by phenotype and by a verified RET germline mutation (M918T or A883F). Thus, to estimate the incidence of

Table 1 Demographic, clinical and follow-up data of 12 Danish MEN2B patients.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>RET mutation</th>
<th>Mucosal neuroma</th>
<th>Marfanoid habitus</th>
<th>At histological adrenal diagnosis</th>
<th>Age (years)</th>
<th>PHEO</th>
<th>At histological thyroid diagnosis</th>
<th>Age (years)</th>
<th>MTCTNM* Procedure</th>
<th>At last follow-up</th>
<th>Age (years)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>F</td>
<td>M918T</td>
<td>Yes</td>
<td>Yes</td>
<td>Unilateral</td>
<td>27.1</td>
<td></td>
<td>T4aN1bM0 TTX + LND</td>
<td>17.6</td>
<td>TxNxm</td>
<td>Alive</td>
<td>27.7</td>
<td>Alive</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>M918T</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>0.8</td>
<td></td>
<td>T1aN0M0 TTX</td>
<td>2.0</td>
<td>T1aM0</td>
<td>Dead</td>
<td>0.5</td>
<td>Dead</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>M918T</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>9.1</td>
<td></td>
<td>T1aN0M0 TTX + LND</td>
<td>23.4</td>
<td>T3N1aM0 TTX + LND</td>
<td>Alive</td>
<td>14.7</td>
<td>Alive</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>M918T</td>
<td>Yes</td>
<td>No</td>
<td>Bilateral</td>
<td>20.4</td>
<td></td>
<td>T3N1aM0 TTX + LND</td>
<td>23.4</td>
<td>T3N0M0 TTX</td>
<td>Alive</td>
<td>23.4</td>
<td>Alive</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>M918T</td>
<td>Yes</td>
<td>Yes</td>
<td>Unilateral</td>
<td>33.8</td>
<td></td>
<td>T4aN1bM0 TTX + LND</td>
<td>35.9</td>
<td>T4aN1bM0</td>
<td>Alive</td>
<td>29.2</td>
<td>Alive</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>A883F</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>11.9</td>
<td></td>
<td>T1aN1bM0 TTX + LND</td>
<td>19.1</td>
<td>T1aN1bM0</td>
<td>Alive</td>
<td>39.2</td>
<td>Dead</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>A883F</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>10.9</td>
<td></td>
<td>T1aN1bM0 TTX + LND</td>
<td>19.1</td>
<td>T1aN1bM0</td>
<td>Alive</td>
<td>39.2</td>
<td>Dead</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>16.7</td>
<td></td>
<td>T4aN1bM0 TTX + ST + LND</td>
<td>21.6</td>
<td>T1bN1aM0</td>
<td>Dead</td>
<td>45.5</td>
<td>Dead</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>Bilateral</td>
<td>36.9</td>
<td></td>
<td>T2N0M0 HT</td>
<td>36.9</td>
<td>T2N0M0 HT</td>
<td>Dead</td>
<td>36.9</td>
<td>Dead</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>13.6</td>
<td></td>
<td>T1aN0M0 TTX</td>
<td>21.6</td>
<td>T1aN0M0 TTX</td>
<td>Alive</td>
<td>21.6</td>
<td>Alive</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
<td>13.6</td>
<td></td>
<td>T1bN1aM0 TTX + LND</td>
<td>45.5</td>
<td>T1bN1aM0 TTX + LND</td>
<td>Dead</td>
<td>45.5</td>
<td>Dead</td>
</tr>
</tbody>
</table>

*According to the 7th Edition of the American Joint Committee on Cancer; †the mother of patient no. 2 and 3; ‡PHEO diagnosed at age 26.2 years by biochemistry and imaging exclusively; §included laryngectomy; ¶PHEO diagnosed at age 13.6 years by biochemistry exclusively.

F, female; HT, hemithyroidectomy; LND, lymph node dissection; M, male; MEN, multiple endocrine neoplasia; MTC, medullary thyroid carcinoma; NA, not available; PHEO, pheochromocytoma; RET, REarranged during Transfection; ST, subtotal thyroidectomy; TNM, tumor, node, metastases; TTX, total thyroidectomy.
MEN2B in Denmark: a nationwide study

Table 2 Incidence of MEN2B in Denmark according to decade and mutation.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A883F</td>
<td>3 (3.5)</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>2 (3.0)</td>
<td>1 (1.8)</td>
<td>1 (1.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M918T</td>
<td>1 (1.3)</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>2 (3.0)</td>
<td>1 (1.8)</td>
<td>1 (1.6)</td>
<td>2 (8.7)</td>
<td></td>
</tr>
<tr>
<td>MEN2B</td>
<td>2 (3.0)</td>
<td>1 (1.3)</td>
<td>0</td>
<td>0</td>
<td>1 (1.5)</td>
<td>1 (1.5)</td>
<td>1 (1.6)</td>
<td>2 (8.7)</td>
<td></td>
</tr>
</tbody>
</table>

*Patients born between 1941 and 1970 died before RET testing was available and were diagnosed by phenotype. Patients born between 1971 and 2014 were diagnosed by phenotype and genotype.

MEN2B in regards to mutation carriers the period of 1971–2000 was chosen, taking the precaution that some MEN2B born from 2001 to 2014 might still be unrecognized (mean age at diagnosis; 13 years (Brauckhoff et al. 2014)). Danish population data were retrieved from Statistics Denmark (www.statbank.dk). All analyses were done using Stata 14.1 (StataCorp, USA). The investigation was approved by the Danish Health Authority (3-3013-395/2) and the Danish Data Protection Agency (13/19275).

A total of 12 MEN2B patients from 10 unrelated families were included. Demographic, clinical and follow-up data are shown in Table 1. All but patient 2 and 3 were classified as having a de novo mutation. The remaining 10 patients were recorded as index patients.

The point prevalence at January 1, 2015, was 1.06 per million (95% CI: 0.39–2.30) (six MEN2B patients and 5,659,715 inhabitants alive). If only including index patients in analysis, the point prevalence at January 1, 2015, were 0.90 (95% CI: 0.29–2.10) and 0.88 (95% CI: 0.28–2.06) per million, respectively.

Table 2 depicts the incidence of MEN2B by decade and mutation. The incidence from 1971 to 2000 was 2.6 (95% CI: 0.85–6.13) per million live births per year. If subdivided by mutation, the incidences of M918T and A883F carriers were 2.1 (95% CI: 0.57–5.38) and 0.5 (95% CI: 0.01–2.93) per million live births per year, respectively. In a German study, the incidence of M918T carriers from 1971 to 2000 was 1.0 per million live births per year (Machens et al. 2013). The differences in incidence probably reflect more or less complete ascertainment rather than a genuine difference.

This study shares limitations inherent with retrospective studies of rare diseases. Small sample sizes limiting generalization are often seen when studying rare diseases, as in this study. To increase sample size, we depleted virtually all possibilities to identify MEN2B patients in Denmark.

Also, the MEN2B diagnosis was not verified by RET mutations in four (no. 9–12) of the 12 included patients. However, three (no. 9–11) demonstrated endocrine (MTC), musculoskeletal (marfanoid habitus, femoral epiphysiolysis, pes cavus, scoliosis), intestinal (constipation) and oral (mucosal neuromas) manifestations consistent with MEN2B. Pertinent data for the remaining patient (no. 12) revealed MTC, bilateral PHEO, constipation and neuromas of the tongue, also consistent with MEN2B.

The A883F carrier introduces heterogeneity into the study. However, inclusion of this carrier seems appropriate when calculating the overall MEN2B prevalence and incidence as such carriers have been identified in at least five other countries (Mathiesen et al. 2017a).

The point prevalence of MEN2B index patients in Denmark was 0.90 per million at January 1, 2012. In a nationwide study consisting solely of MEN2B index patients from Northern Ireland, the point prevalence was 1.65 per million at April 21, 2012 (Znaczko et al. 2014). This is considerably higher than seen in Denmark. However, no statistical significant difference can be proven. This might be due the small sample sizes.

In conclusion, the incidence and prevalence of MEN2B in this nationwide study does not differ significantly from that reported in Germany and Northern Ireland, respectively.

Jes Sloth Mathiesen1,2
Jens Peter Kroustrup3
Peter Vestergaard3
Mette Madsen4
Kirstine Stochholm5
Per Løgstrup Poulsen5
Åse Krogh Rasmussen6
Ulla Feldt-Rasmussen6
Sten Schytte7
Henrik Baymller Pedersen8
Christoffer Holst Hahn9
Jens Bentzen10
Mette Gaustadnes11

1 Department of Endocrinology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
2 Department of Endocrinology, Herlev and Gentofte University Hospital, Herlev, Denmark
3 Department of Oncology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
4 Section of Medical Genetics, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
5 Institute of Clinical Physiology, National Research Centre for the Physiological Basis of Adaptation to Exercise, Copenhagen University, Copenhagen, Denmark
6 Hormone Research Laboratory, Department of Clinical Biochemistry, Gentofte Hospital, Copenhagen University Hospital, Gentofte, Denmark
7 Department of Endocrinology, Odense University Hospital, Odense, Denmark
8 Department of Medical Genetics, Aarhus University Hospital, Aarhus, Denmark
9 Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
10 Department of Endocrinology, Herlev and Gentofte University Hospital, Gentofte, Denmark
11 Department of Obstetrics and Gynecology, Herlev and Gentofte University Hospital, Herlev, Denmark
Torben Falck Ørntoft1,2
Thomas van Overeem Hansen3
Finn Cilius Nielsen1,2
Kim Brixen2
Anja Lisbeth Frederiksen2,3
Christian Godballe4

1Department of ORL Head & Neck Surgery, Odense University Hospital, Odense, Denmark
2Department of Clinical Research, University of Southern Denmark, Odense, Denmark
3Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
4Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
5Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
6Department of Medical Endocrinology, Copenhagen University Hospital, Copenhagen, Denmark
7Department of ORL Head & Neck Surgery, Aarhus University Hospital, Aarhus, Denmark
8Department of ORL Head & Neck Surgery, Aalborg University Hospital, Aalborg, Denmark
9Department of ORL Head & Neck Surgery, Copenhagen University Hospital, Copenhagen, Denmark
10Department of Oncology, Herlev Hospital, Herlev, Denmark
11Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
12Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
13Department of Clinical Genetics, Odense University Hospital, Odense, Denmark

(Correspondence should be addressed to J S Mathiesen; email: jes_mathiesen@yahoo.dk)

Author contribution statement
J S Mathiesen conceived and coordinated the study, collected data, performed statistical analyses and drafted the manuscript. J P Kroustrup, P Vestergaard, M Madsen, K Stochholm, P L Legstrup, Å K Rasmussen, U Feldt-Rasmussen, S Schytte, H B Pedersen, C H Hahn, J Bentzen, M Gaustadnes, T F Ørntoft, T v O Hansen, F C Nielsen, K Brixen, A L Frederiksen and C Godballe participated in data collection, statistical analyses and drafting of the manuscript.

Acknowledgements
The authors are deeply grateful for the statistical support provided by S Moller (OPEN – Odense Patient data Explorative Network, Odense University Hospital and Institute of Clinical, University of Southern Denmark) and the meticulous investigations of early Danish MEN2B patients by the following researchers: B Rasmussen (Copenhagen) and H S Hansen (Copenhagen).

References

Received in final form 19 April 2017
Accepted 24 April 2017
Accepted Preprint published online 24 April 2017