LETTER TO THE EDITOR

Differential efatutazone’s impact on mammary neoplasia dependent upon Brca1 dose

Dear Editor,

The impact of oral peroxisome proliferator-activated receptor gamma agonist (PPARG) efatutazone exposure through diet on mammary preneoplasia and cancer development was evaluated in genetically engineered mice carrying one vs two disrupted Brca1 alleles targeted to mammary epithelial cells in the background of germ-line Trp53 (p53) haploinsufficiency. Brca1^{WT}/fl1/Cre/p53−/− and Brca1^{Null}/fl1/Cre/p53−/− female mice were randomly assigned to receive efatutazone-containing diet (30 mg/kg) or equivalent diet without efatutazone at age 2 months. Efatutazone exposure significantly increased the percentage of mice with tertiary branching (Fig. 1A). Palpable mammary cancers appeared significantly earlier in Brca1^{Null}/fl1/Cre/p53−/− as compared to Brca1^{WT}/fl1/Cre/p53−/− mice, independent of efatutazone exposure (Fig. 1B). Efatutazone significantly reduced mammosphere development in Brca1^{Null}/fl1/Cre/p53−/− mice (Fig. 1C, D and E). The significant reduction in numbers and prevalence of hyperplastic alveolar nodules (HANs) was more profound in Brca1^{WT}/fl1/Cre/p53−/− as compared to Brca1^{Null}/fl1/Cre/p53−/− mice (Fig. 1F and G). Palpable subcutaneous lipomas appeared in both efatutazone cohorts beginning at age 7 months, significantly shifting the reason for killing in the two different models (Fig. 2A). Fewer Brca1^{WT}/fl1/Cre/p53−/− mice were killed for palpable mammary gland cancer than Brca1^{Null}/fl1/Cre/p53−/− mice. Most mice developed one mammary cancer with a range of histology. Four mice developed two palpable mammary cancers: three Brca1^{Null}/fl1/Cre/p53−/− mice (two control and one efatutazone cohort) and one Brca1^{Null}/fl1/Cre/p53−/− mouse (control cohort). Most mammary cancers were triple negative (Fig. 2B, C, D, E, F and G). The two estrogen receptor alpha (ER)- and progesterone receptor (PR)-positive mammary adenocarcinomas that appeared were unique to the Brca1^{Null}/fl1/Cre/p53−/− efatutazone cohort (Fig. 2H and I).

The study was prompted by a previous investigation demonstrating that efatutazone exposure beginning at age 4 months in Brca1^{Null}/fl1/Cre/p53−/− mice, a model which typically generates a range of histology of triple-negative mammary cancers, significantly reduces mammary hyperplasia and induces more differentiated mammary cancers including some ER-positive adenocarcinomas (Nakles et al. 2013). Questions raised by the earlier study included whether or not mice carrying a disruption in only one Brca1 allele (Alothman et al. 2017) might be more responsive to efatutazone and the possibility that earlier administration would be more effective in reducing mammary cancer development (Dong 2013). PPARG has been reported as detectable in over 90% of triple-negative breast cancers developing in women who carry a BRCA1 mutation (Heublein et al. 2017).

Significant differences in efatutazone response were found between the two models. Both models are derived from the same breeding colony with one vs two disrupted Brca1 alleles discriminating between them. The proportion of control mice that developed mammary cancer by age 12 months was not significantly different between the two genotypes; however, the models did exhibit statistically significantly different time-courses of mammary carcinogenesis. Efatutazone was delivered at the same age in both models, raising the possibility that the significant differences in response found between the two models was due to the timing of the intervention relative to the course of mammary carcinogenesis, rather than the underlying genetic difference in full-length Brca1 expression. Even the significant difference in mammosphere development between the models could be related to timing as the published literature suggests that mammosphere development from cancer cells is more profoundly affected by a PPARg agonist as compared to non-cancer cells. Results could argue that for efatutazone to be maximally effective, it may need to be initiated at very early stages of carcinogenesis. Theoretically to test that hypothesis efatutazone could be started even...
Efatutazone’s impact on mammary neoplasia

Figure 1

Efatutazone exposure starting at age 2 months significantly reduced mammary preneoplasia. (A) Bar graphs comparing percentages of Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− mice demonstrating tertiary branching on fourth (inguinal) mammary gland whole mounts (WMs) following exposure to efatutazone or control diet. *P<0.05, Fisher’s exact test, one-sided. WM number (n) analyzed, age (months (m), mean ± s.e.m.) and weight (grams (g), mean ± s.e.m.) for each cohort: Brca1fl11/Cre/p53+/− Efatutazone (E): n = 12 (9.0 ± 0.7 m, 38.0 ± 1.9 g). Control (C): n = 12 (10.1 ± 0.5 m, 36.9 ± 2.4 g). Brca1fl11/Cre/p53+/− E: n = 12 (8.4 ± 0.3 m, 40.6 ± 2.4 g). WMs prepared at the time of necropsy for experimental endpoints designated in IACUC-approved protocol. All available fourth gland WMs analyzed. Mean ages and weights at necropsy were not statistically significantly different between cohorts. (B) Kaplan–Meier survival plot of all Brca1fl11/Cre/p53+/− mice on efatutazone (green) and control (blue) and Brca1fl11/Cre/p53+/− mice on efatutazone (red) and control (black) diets enrolled in study. *Log-rank test for trend chi-Square P=0.0005 between both Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− cohorts. Cohort numbers (n), median age (m) from survival plot: Brca1fl11/Cre/p53+/−: E: n = 17 (12.1 m). C: n = 15 (12.1 m). Brca1fl11/Cre/p53+/−: E: n = 17 (9.1 m). C: n = 19 (9.2). Censored points for death due to non-palpable-tumor-related health reasons prior to age 12 months indicated by vertical ticks (skin ulcer, rectal prolapse, leg paralysis, shaking, lymphoma, found dead). Median survival was not statistically significant between efatutazone and control cohorts for either genotype. (C) Representative phase-contrast images of mammospheres (indicated by black arrows) that formed from primary mammary epithelial cells isolated from efatutazone-exposed Brca1fl11/Cre/p53+/− mice demonstrating HANs on WM following exposure to efatutazone or control diet. *P<0.05, Mann–Whitney U test, two-tailed. Twelve wells plated and analyzed per mouse. Cohort numbers (n), mean age (m) and weight (g): Brca1fl11/Cre/p53+/−: E: n=7 (4.2 ± 0.0 m, 31.5 ± 1.5 g). C: n=6 (3.9 ± 0.1 m, 34.6 ± 1.8 g). Brca1fl11/Cre/p53+/−: E: n=4 (3.9 ± 0.1 m, 32.3 ± 2.9 g). Mammosphere numbers forming from Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− mice on control diet were significantly lower than numbers forming from MMTV-Cre (Cre)3 and wild-type (WT)4 mice on standard facility diet. *P<0.05 Kruskal–Wallis Test, Dunn’s multiple comparison. MMTV-Cre: n=3 (4.2 ± 0.0 m, 31.2 ± 5.1 g). WT: n=3 (5.2 ± 0.0 m, 25.6 ± 0.6 g). (D) Box and whisker plots (mean and range) illustrating a reduction in mammosphere numbers forming from primary mammary epithelial cells isolated from efatutazone-exposed Brca1fl11/Cre/p53+/− mice as compared to Brca1fl11/Cre/p53+/− mice on control diet. *P<0.05 Mann-Whitney U test, two-tailed. Twelve wells plated and analyzed per mouse. Cohort numbers (n), mean age (m) and weight (g): Brca1fl11/Cre/p53+/−: E: n=7 (4.2 ± 0.0 m, 31.5 ± 1.5 g). C: n=6 (3.9 ± 0.1 m, 34.6 ± 1.8 g). Brca1fl11/Cre/p53+/−: E: n=4 (3.9 ± 0.1 m, 32.3 ± 2.9 g). Mammosphere numbers forming from Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− mice on control diet were significantly lower than numbers forming from MMTV-Cre (Cre)3 and wild-type (WT)4 mice on standard facility diet. *P<0.05 Kruskal–Wallis Test, Dunn’s multiple comparison. MMTV-Cre: n=3 (4.2 ± 0.0 m, 31.2 ± 5.1 g). WT: n=3 (5.2 ± 0.0 m, 25.6 ± 0.6 g). (E) Box and whisker plots (mean and range) illustrating that mammospheres derived from efatutazone-exposed Brca1fl11/Cre/p53+/− mice were significantly smaller than those obtained from efatutazone-exposed Brca1fl11/Cre/p53+/− mice. *P<0.05 Kruskal–Wallis Test, Dunn’s multiple comparison. Wells and cohorts analyzed were the same as those analyzed for Brca1fl11/Cre/p53+/− mice. (F) Scatter plots (mean ± s.e.m. indicated) comparing numbers of HANs per WM from Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− mice following exposure to efatutazone or control diet. *P<0.05, Mann–Whitney U test, one-tailed. WMs and cohorts analyzed were the same as those analyzed for tertiary branching (Panel A). (G) Bar graphs comparing percentages of Brca1fl11/Cre/p53+/− and Brca1fl11/Cre/p53+/− mice demonstrating HANs on WM following exposure to efatutazone or control diet. *P<0.05, Fisher’s exact test, one-sided. WMs and cohorts analyzed were the same as those analyzed for tertiary branching (Panel A).
Figure 2
Impact of efatutazone exposure on mammary cancer development in Brca1^{WT/fl11/Cre/p53^{+/−}} and Brca1^{fl11/fl11/Cre/p53^{+/−}} mice. (A) Stacked bar graphs comparing numbers of mice euthanized for tumor burden with lipoma alone, lipoma and mammary cancer, or mammary cancer alone. *P<0.05, 2 × 3 Fisher's exact. Number (n) of mice and age (m, mean ± s.e.m.) for each cohort: Brca1^{WT/fl11/Cre/p53^{+/−}} E: n = 8 (9.8 ± 0.7 m). C: n = 7 (10.4 ± 0.7 m). Brca1^{fl11/fl11/Cre/p53^{+/−}} E: n = 13 (8.5 ± 0.4 m). C: n = 10. (9.0 ± 0.4). (B) Stacked bar graphs comparing distribution of mammary cancer histology identified in the palpable mammary cancers. Number (n) of mice and age (m, mean ± s.e.m.) for each cohort: Brca1^{WT/fl11/Cre/p53^{+/−}} E: n = 3 (7.7 ± 0.7 m). C: n = 7 (10.4 ± 0.7 m). Brca1^{fl11/fl11/Cre/p53^{+/−}} E: n = 11 (8.6 ± 0.4 m). C: n = 10. (9.0 ± 0.4). Representative hematoxylin and eosin images of triple negative mammary adenocarcinoma (C), anaplastic carcinoma (D and F), sarcomatoid carcinoma (E and G) histology from palpable mammary cancers that developed in Brca1^{WT/fl11/Cre/p53^{+/−}} and Brca1^{fl11/fl11/Cre/p53^{+/−}} mice on efatutazone or control diet. Insets to right show representative images of ER (top), PR (middle) and HER2 (bottom) IHC. (H and I) Representative images of the histology and ER, PR and HER2 IHC of the two palpable ER+/PR+ mammary adenocarcinomas that developed in Brca1^{fl11/fl11/Cre/p53^{+/−}} mice on efatutazone diet. Arrows indicate representative mammary cancer cells demonstrating nuclear-localized ER and PR staining. Inset IHC images taken at 40× (C, D, E, F, G). Larger images taken at 20× (C, D, E, F, G, H and I). Scale bar = 0.1 mm.
before the end of puberty; however, here we identified a
toxicity, lipoma development, prominent in this study
but not found when efatutazone exposure was started
at age 4 months (Nakles et al. 2013). PPARG activation
previously has been suggested as a component of lipoma
pathophysiology (Koppen & Kalkhoven 2010). The study
indicates that developmental age at exposure may also
play a role. Finally, we cannot exclude the possibility that
germ-line Trp53 haploinsufficiency also contributed to the
susceptibility of the mice for lipoma development.

For preneoplasia reduction, Brca1WT/fl11/Cre/p53+/-
mice were more sensitive than Brca1fl11/fl11/Cre/p53+/-
mice, but this did not translate to absolute mammary cancer prevention. The possibility of a parallel significant reduction in mammary cancer appearance could not be fully assessed due to the unexpected appearance of the palpable lipomas, found uniquely in this study when efatutazone was initiated at the younger age. This necessitated killing for tumor burden, required by the Institutional Animal Use and Care approved protocol, prior to the scheduled endpoint for evaluation of mammary cancer prevalence (age 12 months) in a significant proportion of the Brca1WT/fl11/Cre/p53+/- mice. In contrast, mammary tumor and lipoma development appeared temporally coincident in the Brca1fl11/fl11/Cre/p53+/- mice that exhibit earlier mammary cancer development. The appearance of lipomas in Brca1fl11/fl11/Cre/p53+/- mice did not compromise assessment of mammary cancer prevalence, which was unchanged by efatutazone exposure.

An alternative or contributing hypothesis for the
significant differences found would be a differential action of efatutazone based on the presence or absence of full-length Brca1. Brca1WT/fl11/Cre/p53+/- mice still retain one functional Brca1 allele, and mammary cancer development occurs without loss of the second Brca1 allele (Alothman et al. 2017), as occur in a portion of women carrying BRCA1 mutation (Roy et al. 2011). PPARG agonists are reported to increase BRCA1 expression in vitro in human breast cancer cells and in vivo in mammary glands of FVB mice (Subbaramaiah et al. 2012). Perhaps significantly, efatutazone is reported to be effective in delaying progression and inducing differentiation in a xenograft model of triple-negative ductal carcinoma in situ (MCFCDCIS) with intact BRCA1 and p53 alleles (Ory et al. 2018).

Replicated in this investigation was the novel appearance of ER+/PR+ mammary adenocarcinomas in the efatutazone-exposed Brca1fl11/fl11/Cre/p53+/- mice. While a low-incidence event in both this and the prior study (Nakles et al. 2013), it did appear in two independent and temporally distinct experiments. Results support the possibility that activation of the PPARG pathway can contribute to the appearance of more differentiated mammary cancers retaining expression of ER and PR. None of the cancers expressed pathophysiological levels of Erb-B2 receptor tyrosine kinase 2 (ErbB2/Her2) and the majority of cancers in all groups were triple negative, consistent with previous studies in these and related models (Nakles et al. 2013).

Recognizing the fact that efatutazone was not protective of mammary cancer development, even as it significantly reduced preneoplastic growth, prompts the question of whether or not combining the drug with a second agent such as an antihormonal, a retinoid X receptor RXR ligand, TNF superfamily member 11 (TNFSF11)/RANKL inhibition or agents affecting the cell cycle such as cyclin-dependent kinase (CDK)4/6 inhibitors would be more effective. Time-course studies in which interventions are initiated at different ages in models with different temporal patterns of carcinogenesis on a prospective basis may help to further define the points during carcinogenesis when specific preventive agents can be effective. Direct comparison of the mechanistic action of efatutazone in in vitro and in vivo models with different gene dosages of Brca1 and Trp53 intact could establish if there are specific roles for their respective proteins in moderating response to a PPARG agonist.

All animal procedures were performed in accordance
with federal guidelines and were approved by the
Georgetown University Institutional Animal Care and
Use Committee. Generation of mouse cohorts, dietary
interventions (F3028, rodents diet, grain-based 1/2-in
pellets without or with efatutazone (30 mg/kg), Bio-Serv,
Frenchtown, NJ, USA) and histology were performed as
previously described (Nakles et al. 2013, Alothman et al.
2017). Pathology was read blindly by a board-certified
pathologist (B V K). NanoCulture Plates (ORGANOGENIX
Inc., Kanagawa, JP) were used to assess 3D mammosphere
formation in serum-free EpiCult-B Mouse media
(STEMCELL Technologies, Vancouver, CA, USA) (Arai
(IHC) procedures: ER (primary antibodies: ab75635,
1:50, overnight 4°C, Abcam; 06-935, 1:100, 1 h, room
temperature (RT), Millipore Sigma), PR (sc538, 1:350,
1 h, RT, Santa Cruz Biotechnology, Inc.), HER2 (ERBB2
(2165, 1:100, overnight 4°C, Cell Signaling). Before
primary antibody exposure, heat-induced epitope
retrieval was performed by immersing tissue sections at
98°C for 20 min in 10 mM citrate buffer (pH 6.0) with
0.05% Tween (ER, PR) or 98°C for 20 min in 0.5 M EDTA

http://erc.endocrinology-journals.org
Published by Bioscientifica Ltd.
Printed in Great Britain
© 2018 Society for Endocrinology
Published by Bioscientifica Ltd.
Printed in Great Britain
http://doi.org/10.1530/ERC-18-0299
Downloaded from Bioscientifica.com at 10/16/2018 03:03:43AM
via free access
buffer (pH 8.0) (HER2) followed by treatment with 3% hydrogen peroxide and 10% normal goat serum (10 min each). Following primary antibody exposure, slides were exposed to an HRP-labeled polymer (EnVision+ System-HRP Labeled Polymer Anti-Rabbit, K4003, Dako, 30 min) and 3′-Diaminobenzidine (DAB) (Dako, 5 min). Cancers were read as ER+/PR+ when nuclear localization of both proteins was present. Two independent primary antibodies were used to test ER nuclear localization. Positive (human ER+/PR+/HER2-amplified breast cancer) and negative (no primary antibody) controls were performed with each individual IHC experiment. Statistical analyses were performed using GraphPad Prism and the VassarStats: Statistical Computation Web Site. P < 0.05 was considered significant.

Sahar J Alothman1,2
Weisheng Wang3
Shan Chao1,2
Bhaskar V Kallakury3,4
Edgar S Diaz-Cruz2,5
Priscilla A Furth2,4,6

1Graduate School of Arts and Science, Georgetown University, Washington, District of Columbia, USA
2Department of Oncology, Georgetown University, Washington, District of Columbia, USA
3Department of Pathology, Georgetown University, Washington, District of Columbia, USA
4Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
5College of Pharmacy, Belmont University, Nashville, Tennessee, USA
6Department of Medicine, Georgetown University, Washington, District of Columbia, USA

(Correspondence should be addressed to P A Furth: paf3@georgetown.edu)

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this article.

Funding
This work was supported by National Institutes of Health, National Cancer Institute RO1 CA112176 (P A F) and SP30CA051008 (Histopathology and Tissue and Animal Model Shared Resources) and the King Abdullah Scholarship Program, Ministry of Education, Kingdom of Saudi Arabia.

Author contribution statement

References

Received in final form 29 June 2018
Accepted 12 July 2018