Dear Editor,

Differentiated thyroid cancer (DTC) has become one of the most frequently diagnosed malignancies, especially among women and young adults (Davies & Welch 2014). The outcomes are generally very good: disease recurrence rates are low (Durante et al. 2013), and survival rates are excellent (Tuttle et al. 2017a). Evidence-based management is crucial to avoid overtreatment of these low-risk tumors, which can reduce quality of life and yet identify accurately those requiring more aggressive therapy. Several staging systems have been generated to inform DTC management. One of the most widely used is the tumor-node-metastasis (TNM) classification elaborated by the American Joint Committee on Cancer (AJCC), which allows to predict the risk of cancer-related death. The 8th edition of the AJCC staging system for thyroid cancer (AJCC-8) was recently published (Tuttle et al. 2017b) and is scheduled to be implemented on 1 January 2018. Revision of the system was undertaken to address several specific limitations identified in the 7th edition (AJCC-7), which has been in use since 2009 (Tuttle et al. 2017a,b). The main changes (described in detail below and summarized in Table 1) are as follows: (1) an increase in the age threshold for defining high risk of thyroid cancer-related death and (2) a decrease in the unfavorable prognostic significance attributed to certain findings (i.e., cervical lymph node metastases and microscopic extrathyroidal extension (ETE), which has been re-defined to include only invasion of the perithyroidal muscle).

To assess the impact of transitioning to the new AJCC-8 in terms of stage distribution and prevalence of each stage class, we analyzed data extracted from the web-based database of the Italian Thyroid Cancer Observatory (ITCO) (www.itcofoundation.org), a network of thyroid cancer centers (including primary and tertiary centers) located throughout Italy. The database includes prospectively updated, observational data provided by ITCO member centers on patients consecutively diagnosed with thyroid cancer since 2013 (Lamartina et al. 2017). Cases included in our study met all the following criteria: (1) histological diagnosis of thyroid cancer of follicular origin; (2) date of diagnosis between 1 January 2013 and 1 March 2017; (3) complete data on primary tumor pathology, including minimal ETE, and initial treatment.

The selected cohort analyzed included 1765 patients, 76% of whom were females. The median age at diagnosis was 48 years (range: 10–87). Total thyroidectomy (or lobectomy + completion thyroidectomy) was performed in 1727 (98%) cases and followed by radioiodine remnant ablation in 954 (55%). Neck dissection was performed in 711 (40%) of the 1765 patients. Most of the tumors (n = 1657, 94%) were papillary thyroid cancers; the remaining 108 (6%) were follicular or Hürthle cell carcinomas. Estimated risks of recurrence calculated according to the criteria recommended in 2015 by the American Thyroid Association were low in 1046 (59%), intermediate in 612 (35%) and high in 107 (6%) of the cases. Microscopic ETE was found in 410 (23%), but only 40 (2%) of these patients had gross invasion of the strap muscles (sternohyoid, sternothyroid, thyroidhyoid and/or omohyoid muscles). Lymph node status for the 711 patients who underwent lymph node dissection was as follows: pN0 (no metastasis) in 338 (19%); pN1a (central compartment metastases) in 221 (12%) and pN1b (lateral compartment metastases) 152 (9%). Distant metastases were found in 32 (1.8%) patients.

As noted above, in the AJCC-8, the age threshold for high risk of disease-specific mortality was raised from 45 years – the median age at diagnosis in several published series – to 55 years (Nixon et al. 2016). This change increases the proportion of relatively young patients whose mortality risk can be defined solely on the basis of the absence or presence of distant metastases (stages I and II, respectively) (Table 1). As shown in Fig. 1A, the percentage of patients classified as ‘younger’ in our
cohort rose from 40% (698/1765) with the AJCC-7 to 65% (1150/1765) with the AJCC-8, but in both cases, the proportion of patients with distant metastases (i.e., those classified as stage II) was identically low (2%). Given the overall increase in the age of the ‘younger’ stage II patients, their estimated disease-specific survival at 10 years (DSS-10) drops from 95–99% to 85–95% (Kim et al. 2017b, Tuttle et al. 2017a,b).

Among the 615 patients classified by both the AJCC-7 and the AJCC-8 as ‘older’ (Fig. 1B), 193 (31%) originally classified as stage III or IVa were re-classified as stage II, raising the proportion of patients with stages I–II DTC from 64% to 94%. Over half of the downstaging (112/193, 58%) involved patients whose previous T3 classification had been based solely on the presence of microscopic ETE, which has no effect on the T category or overall disease stage in the AJCC-8 (Tuttle et al. 2017b). In the remaining patients, the AJCC-7 classification as stage III or IV had been based on the presence of regional metastases alone (45/193, 23%), which no longer necessitates assignment

Table 1

<table>
<thead>
<tr>
<th>7th edition</th>
<th>8th edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <45 years</td>
<td>Age ≥55 years</td>
</tr>
<tr>
<td>I</td>
<td>Any tumor size</td>
</tr>
<tr>
<td>II</td>
<td>Any tumor size</td>
</tr>
<tr>
<td>Age ≥45 years</td>
<td>Age ≥55 years</td>
</tr>
<tr>
<td>I</td>
<td>Tumor of ≤2 cm limited to the thyroid (T1)</td>
</tr>
<tr>
<td>II</td>
<td>Tumor of ≤4 cm limited to the thyroid (T2)</td>
</tr>
<tr>
<td>III</td>
<td>Tumor of any size with lymph node metastases of the central compartment (N1a) or with minimal extrathyroidal extension (T3) with/without lymph node metastases of the central compartment</td>
</tr>
<tr>
<td>IVa</td>
<td>Tumor of any size with lymph node metastases of the lateral compartment (N1b) or with gross extrathyroidal extension invading subcutaneous soft tissues, larynx, trachea, esophagus, or recurrent laryngeal nerve (T4a) with/without lymph node metastases</td>
</tr>
<tr>
<td>IVb</td>
<td>Gross extrathyroidal extension invading prevertebral fascia or encasing the carotid artery or mediastinal vessels (T4b)</td>
</tr>
<tr>
<td>IVc</td>
<td>Any tumor size</td>
</tr>
</tbody>
</table>

AJCC TNM staging: 7th and 8th editions.
to stage III (Tuttle et al. 2017b), or regional metastases plus microscopic ETE (18/193, 9%). It should be noted that, differently from the AJCC-7, the ITCO database has always classified level VII lymph node metastases as central neck node lesions. This reflects the well-known difficulties in distinguishing levels VI and VII and is consistent with the revised definitions adopted in the AJCC-8 (Tuttle et al. 2017b). Since the same classification was also used for our AJCC-7 staging, some cases that met the criteria for AJCC-7 stage IVA may have been erroneously reported herein as stage III. As for the entire cohort, application of the AJCC-8 criteria downstaged 477 (27%) of the 1765 DTC patients. As a result, the estimated risk for 10-year disease-specific mortality was <15% for almost all the patients. Higher estimated risks (>40%) were restricted to stage III and IV. Importantly, the mortality risk was not always paralleled by the likelihood of recurrence. The risk of recurrence, as defined by the American Thyroid Association, was rated intermediate in 25% of AJCC-8 stage I patients and 90% of AJCC-8 stage II patients aged ≥55, and high risks of recurrence were found in 3% and 4% of these groups, respectively, owing to the presence of unfavorable histologic findings (i.e., widely invasive follicular and Hürthle cell cancer with foci of vascular invasion).

The AJCC-8 stage distribution for our DTC cohort resembles those reported for retrospectively analyzed cohorts (Kim et al. 2017a,b), where the downstaging affected an even larger subset of patients (38%). Compared with the ITCO cohort, the Korean cohorts included higher percentages of patients with regional metastasis or microscopic ETE (56% and 32–40%, respectively), which might reflect a referral-center-selection bias. Microscopic ETE reporting can be unreliable as it is often variable even between skilled pathologists (Su et al. 2016). However, a far better agreement was found for the presence of gross ETE with invasion of perithyroidal muscles compared with invasion of perithyroidal fat only. The extensive downstaging effect of the AJCC-8 was intentional: the TNM staging system assesses the risk of DTC-related death, which has proved to be very low for most patients. Indeed, the results of retrospective cohort analyses confirm that the AJCC-8 provides more accurate estimates of DTC patients’ DSS (Kim et al. 2017a,b, Pontius et al. 2017, Tuttle et al. 2017a). From a practical standpoint, application of the AJCC-8 criteria can be expected to simplify the staging process for most DTC patients, who will now be classified as ‘younger’. It will also markedly reduce the number of patients with a substantial mortality risk (those with stages III–IV disease, where the DSS-10 is <50–70%). This new tool, together with the risk of recurrence stratification tools, should facilitate clinicians’ attempts to provide more cost-effective management of DTCs, and this improvement should also have benefits in terms of their patients’ quality of life.

Livia Lamartina1,*
Giorgio Granî1,*
Emanuela Arvat2
Alice Nervo2
Maria Chiara Zatelli3
Roberta Rossi3
Efisio Puxeddu4
Silvia Morelli4
Massimo Torlontano5
Michela Massa5
Rocco Bellantone6
Alfredo Pontecorvi7
Teresa Montesano8
Loredana Pagano9
Lorenzo Daniele10
Laura Fugazzola1,11,12
Graziano Ceresini13
Rocco Bruno14
Ruth Rossetto15
Salvatore Tumino16
Marco Centanni17
Domenico Meringolo18
Maria Grazia Castagna19
Domenico Salvatore20
Antonio Nicolucci21
Giuseppe Luciano22
Sebastiano Filetti1
Cosimo Durante1

1Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma Sapienza, Roma, Italy
2Dipartimento di Scienze Mediche, Università di Torino, Torino, Italy
3Unità Operativa di Endocrinologia e Malattie del Ricambio, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
4Dipartimento di Medicina, Università di Perugia, Perugia, Italy
5Dipartimento di Scienze Mediche, Ospedale Casa Sollievo della Sofferenza-IRCCS, San Giovanni Rotondo, Italy
6Cattedra di Chirurgia Endocrina, Area di Endocrinologia e Malattie Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Roma, Italy
7Cattedra di Endocrinologia, Area di Endocrinologia e Malattie Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Roma, Italy
8Unità di Medicina Nucleare, Università di Roma Sapienza, Roma, Italy
9Unità di Endocrinologia, Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
10Unità di Patologia, Ospedale Mauriziano Umberto I di Torino, Torino, Italy
11Divisione di Malattie Endocrine e Metaboliche, Istituto Auxologico Italiano IRCCS, Milano, Italy
12Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
13Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
14Unità di Endocrinologia, Ospedale di Tinchi-Pisticci, Matera, Italy
15Divisione di Endocrinologia, Diabetologia e Metabolismo, Dipartimento di Scienze Mediche, Ospedale Molinette, A.O.U. Città della Salute e della Scienza di Torino, Università di Torino, Torino, Italy

16Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
17Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Università di Roma Sapienza, Latina, Italy
18Unità Operativa Semplice Dipartimentale, Ospedale Bentivoglio, Ausl Bologna, Bologna, Italy
19Dipartimento di Scienze Mediche, Chirurgiche e Neurologiche, Università di Siena, Siena, Italy
20Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Napoli, Italy
21Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy

*1(L. Lamartina and G. Grani contributed equally to this work)

\begin{flushleft}
Declaration of interest
\end{flushleft}

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this article.

\begin{flushleft}
Funding
\end{flushleft}

This paper was funded by the Umberto Di Mario Foundation.

\begin{flushleft}
Author contribution statement
\end{flushleft}

Livía Lamartina and Giorgio Grani: data management and interpretation, analysis and writing. Antonio Nicolucci and Giuseppe Luciano: statistical analysis and data interpretation. Emanuela Arvat, Alice Nervo, Maria Chiara Zatelli, Roberta Rossi, Efisio Puxeddu, Silvia Morelli, Massimo Torlontano, Michela Massa, Rocco Bellantone, Alfredo Pontecorvi, Teresa Montesano, Loredana Pagano, Lorenzo Daniele, Laura Fugazzola, Graziano Ceresini, Rocco Bruno, Ruth Rossetto, Salvatore Tumino, Marco Centanni, Domenico Meringolo, Maria Grazia Castagna and Domenico Salvatore: data collection and analysis, and manuscript editing. Cosimo Durante and Sebastiano Filetti: concept, data interpretation, analysis and manuscript editing.

\begin{flushleft}
Acknowledgements
\end{flushleft}

G G and L L contributed to this paper as recipients of the PhD program of Biotechnologies and Clinical Medicine of the University of Rome, Sapienza. Medical editing services were provided by M E Kent and funded by the Umberto Di Mario Foundation. The authors thank all the members of the ITCCS foundation: Ancona: Alessia Smerilli, Augusto Taccaliti. Bari: Vincenzo Triggiani, Giuseppina Renzulli, Brescia: Maria Beatrice Panarotto. Catania: Simona Quartararo, Dario Tumino. Ferrara: Ettore Degli Uberti. La Spezia: Laura Camerieri, Mario Cappagli. Livorno: Daniele Barbaro, Paola Lapi. Matera: Antonella Carbone. Milano: Università degli Studi di Milano: Carla Calomio, Simone De Leo, Luca Persani; Università Humanitas di Milano: Andrea Lania. Napoli: Università degli Studi di Napoli ‘Federico II’: Tommaso Porcelli. Istituto Nazionale Tumori ITCCS ‘Fondazione G. Pascale’: Maria Grazia Chiofalo, Luciano Pezzullo. Novara: Gianluca Aimaretti, Chiara Mele. Padova: Caterina Mian,

References

Received in final form 24 November 2017
Accepted 29 November 2017
Accepted Preprint published online 30 November 2017

Oral Oncology 71 81–86. (https://doi.org/10.1016/j.oraloncology.2017.06.004)

Pontius LN, Oyekunle TO, Thomas SM, Stang MT, Scheri RP, Roman SA & Sosa JA 2017 Projecting survival in papillary thyroid cancer: a comparison of the seventh and eighth editions of the American Joint Commission on cancer/union for international cancer control staging systems in two contemporary national patient cohorts. Thyroid 27 1408–1416. (https://doi.org/10.1089/thy.2017.0306)