Targeting autophagy in thyroid cancers

Weijun Wei1,2, Heather Hardin3 and Quan-Yong Luo1

1Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
2Shanghai Jiao Tong University School of Medicine, Shanghai, China
3Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

Correspondence should be addressed to Q-Y Luo: luoqy@sjtu.edu.cn

Abstract
Thyroid cancer is one of the most common endocrine malignancies. Although the prognosis for the majority of thyroid cancers is relatively good, patients with metastatic, radioiodine-refractory or anaplastic thyroid cancers have an unfavorable outcome. With the gradual understanding of the oncogenic events in thyroid cancers, molecularly targeted therapy using tyrosine kinase inhibitors (TKIs) is greatly changing the therapeutic landscape of radioiodine-refractory differentiated thyroid cancers (RR-DTCs), but intrinsic and acquired drug resistance, as well as adverse effects, may limit their clinical efficacy and use. In this setting, development of synergistic treatment options is of clinical significance, which may enhance the therapeutic effect of current TKIs and further overcome the resultant drug resistance. Autophagy is a critical cellular process involved not only in protecting cells and organisms from stressors but also in the maintenance and development of various kinds of cancers. Substantial studies have explored the complex role of autophagy in thyroid cancers. Specifically, autophagy plays important roles in mediating the drug resistance of small-molecular therapeutics, in regulating the dedifferentiation process of thyroid cancers and also in affecting the treatment outcome of radioiodine therapy. Exploring how autophagy intertwines in the development and dedifferentiation process of thyroid cancers is essential, which will enable a more profound understanding of the physiopathology of thyroid cancers. More importantly, these advances may fuel future development of autophagy-targeted therapeutic strategies for patients with thyroid cancers. Herein, we summarize the most recent evidence uncovering the role of autophagy in thyroid cancers and highlight future research perspectives in this regard.

Key Words
thyroid cancer
autophagy
radioiodine
molecularly targeted therapy
RR-DTC

Introduction
Thyroid cancer is the fifth most common cancer in women in the United States and is the most commonly diagnosed cancer before the age of 30 years among women in China (Chen et al. 2016). Although thyroid cancer is generally considered as an indolent tumor, it has a broad range of clinical behaviors ranging from an indolent tumor under the umbrella term of differentiated thyroid cancer (DTC) to more aggressive types (i.e., anaplastic thyroid cancer (ATC) and medullary thyroid cancer (MTC)). DTC accounts for more than 95% of thyroid cancers and contains two major subtypes (i.e., papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC)). While patients with lower risk diseases or benign thyroid nodules should not be overtreated, those with advanced diseases should be given more aggressive and efficacious treatments. Currently, a combination of surgery, radioactive iodine...
(RAI, 131I) and subsequent TSH suppression therapy is the mainstay of therapy for most DTC patients (Wei et al. 2018b). However, due to tumor dedifferentiation and concomitant loss of sodium/iodide symporter (NIS), certain thyroid cancer patients are insensitive or resistant to RAI therapy (Song et al. 2015). Although rare, ATC is the most aggressive form of thyroid cancers and is a clinical challenge owing to its pleomorphic histopathological features and rapid progression (Ragazzi et al. 2014, Keutgen et al. 2015, Tiedje et al. 2018).

The MAPK oncogenic pathway is closely involved in the proliferation, invasion and differentiation status of thyroid cancers (Fig. 1; Xing 2013). BRAF (v-raf murine sarcoma viral oncogene homolog B) is one of the well-characterized members of the MAPK pathway and somatic BRAF mutation, especially BRAFV600E mutation, occurs in up to 50% of PTCs and 45% of ATCs (Xing 2013, Landa et al. 2016, Molinaro et al. 2017, Sandulache et al. 2017). As such, molecularly targeted therapy suppressing oncogenic proteins like BRAFV600E has increasingly been used for patients with radioiodine-refractory differentiated thyroid cancer (RR-DTC). Currently, vemurafenib and dabrafenib are two selective BRAFV600E inhibitors under clinical investigation for DTC patients harboring BRAFV600E mutation. In addition, two multi-kinase inhibitors with antiangiogenic properties, sorafenib and lenvatinib, have been licensed for treating RR-DTC and showed advantages in terms of progression-free survival. However, drug resistance and adverse effects associated with the single-agent treatment often lead to termination of the targeted therapy (Shen et al. 2014). Furthermore, the impact of these TKIs on overall survival of patients with RR-DTC

Figure 1

The MAPK and PI3K oncogenic signaling pathways are the main signaling cascades implicated in the thyroid cancer initiation, progression and dedifferentiation. The genetic mutation in the BRAF gene most commonly results in amino acid transformation at the 600 locus in the BRAF protein. The mutated BRAF (i.e., BRAFV600E) has enzymatic function and transmits messages by phosphorylating downstream protein MEK. BRAFV600E mutation in the thyroid may lead to significant reduction of proteins responsible for radioiodine uptake in both mouse models and in humans. Inhibitors blocking either mutated BRAF and/or MEK restore RAI uptake and prolong retention of radioiodine in the thyroid cancer cells. In addition to the MAPK signaling cascade, the PI3K pathway is also involved in the initiation and progression of thyroid cancers. PTEN switches off PI3K signal by dephosphorylating PIP3 and therefore is a tumor suppressor. ALK, anaplastic lymphoma kinase; BRAF, rapidly accelerated fibrosarcoma type-B or v-raf murine sarcoma viral oncogene homolog B; MAPK, mitogen-activated protein kinase; NTRK, neurotrophic receptor tyrosine kinase; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PTEN, phosphatase and tensin homolog deleted on chromosome 10; RAS, rat sarcoma; RET, rearranged during transfection; RTK, receptor tyrosine kinase. A full color version of this figure is available at https://doi.org/10.1530/ERC-18-0502.
has not been proven yet. Meanwhile, redifferentiation of RR-DTC emerges as a very promising approach to restore NIS expression and to enable ¹³¹I therapy (Ho et al. 2013, Rothenberg et al. 2015, Dunn et al. 2018). Nonetheless, novel strategies that can enhance the efficacy of TKIs and/or overcome resistance of TKIs are in urgent need to refine the clinical management of RR-DTCs and ATCs.

Macroautophagy (hereafter referred to as autophagy) is a process that captures and degrades intracellular components in lysosomes, thereby sustaining metabolic homeostasis and promoting the growth of a broad spectrum of cancers under certain conditions. Autophagy not only occurs upon nutrient deprivation to supply cells with building blocks but also occurs under nutrient-rich conditions to mediate the removal of superfluous or damaged organelles and potentially toxic protein aggregates (White et al. 2015, Klionsky et al. 2016). Mitophagy is a selective form of autophagy that mediates the removal of mitochondria. Loss of mitochondrial membrane potential (∆Ψm) and mitochondrial fragmentation generally precede mitophagy (Youle & Narendra 2011). The role of autophagy in sustaining metabolism and in promoting tumorigenesis has been widely investigated in multiple types of cancers (Guo et al. 2013, Strohecker et al. 2013, Karsli-Uzunbas et al. 2014, Yang et al. 2018). Although the detailed role of autophagy in the pathogenesis of thyroid cancer is not yet elucidated (Netea-Maier et al. 2015), recent studies shed light on the underlying mechanisms of autophagy in regulating the development and dedifferentiation of thyroid cancers (Plantinga et al. 2016, Tesselaar et al. 2017a, Tesselaar et al. 2018). Besides, dysregulated autophagy is closely involved in the resistance of small-molecule drugs (e.g., vemurafenib) in thyroid cancers (Wang et al. 2017, Wei et al. 2017). We herein review the potential role of autophagy in mediating the initiation, development and progression of thyroid cancers and highlight how autophagy interferes with the dedifferentiation process of thyroid cancers. Insights from the current evidence may provide the rationale for manipulating autophagy activity in treating thyroid cancers and in redifferentiating RR-DTC either as a standalone method or in combination with clinically available TKIs.

Autophagy in initiation and development of thyroid cancers

It is conceivable that both autophagy and mitophagy are linked to the initiation and development of thyroid cancers. Several major genomic mutations and/or rearrangements accounting for the occurrence of thyroid cancers may directly or indirectly regulate the activity of autophagy in thyroid cancers. Additionally, somatic mutations/deletions of mitochondrial DNA and alteration of mitochondrial biogenesis are associated with the carcinogenesis of a portion of Hürthle cell tumors, which are characterized by the cytoplasmic accumulation of abundant mitochondria (Maximo et al. 2012). As a specific type of autophagy dealing with redundant mitochondria (Youle & Narendra 2011), mitophagy plays an important role in the evolution of Hürthle cell tumors (Yi et al. 2017).

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor but its function is disabled in several human cancers. Although endogenous expression of HRASG12V alone is insufficient to drive thyroid tumorigenesis (Chen et al. 2009), and thyroid-specific knock-in of BRAFV600E induces mostly benign lesions (Franco et al. 2011), loss of p53 or concomitant loss of function of PTEN and p53 could induce initiation and progression of ATC (Antico Arciuch et al. 2011, McFadden et al. 2014). In addition, PTEN is a critical regulator in the development and progression of FTC and follicular adenomas (Yeager et al. 2007, Guigon et al. 2009). PTEN is also closely associated with Cowden syndrome, an autosomal dominant disorder that predisposes to female breast cancer, thyroid cancer and other cancers (Zbuk & Eng 2007). PTEN-induced putative kinase 1 (PINK1)-Parkin pathway involves maintaining mitochondrial integrity and functions through triggering the mitophagy of abnormal mitochondria (Park et al. 2006, Grenier et al. 2013). Lee and colleagues found that Hürthle tumor cells had intact non-selective autophagy but ineffective mitophagy activity, which therefore resulted in decreased turnover of aberrant mitochondria and carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced cell death (Lee et al. 2015). The authors further reported that expression of WT Parkin sensitized Hürthle cell lines to CCCP-induced cell death (Lee et al. 2015). Recent studies also revealed the role of autophagy in regulating the dynamics of ciliogenesis (Pampliega et al. 2013, Satir & Pampliega 2016). Interestingly, although PTCs have long cilia, Hürthle cells found either in benign nodules or in malignant thyroid diseases were devoid of primary cilia (Lee et al. 2016). Loss of cilia seemed to be a characteristic feature of Hürthle cells and was associated with high levels of autophagosome biogenesis, and inhibition of autophagy restored ciliogenesis in the Hürthle cell lines (Lee et al. 2016).

Succinate dehydrogenase (SDH) is a unique membrane-bound enzyme that plays dual functions in both the Krebs cycle for succinate oxidation and the
respiratory chain for electron transfer to the terminal acceptor ubiquinone. SDH contains two catalytic subunits (SDHA and SDHB) and two structural anchors (SDHC and SDHD). Generally, genes encoding the four subunits of SDH are believed to be tumor suppressor genes (Gimm et al. 2000). A recent study elucidated that germline SDH variants, SDHD-G12S and SDHD-H50R, may result in the oxidation and loss of function of PTEN (oxidized PTEN) in FTC cell lines (Yu et al. 2015). The same team further elaborately found that both normal thyroid follicles and PTC cells expressing SDHD-G12S or -H50R variants grew faster than SDHD-WT cells (Yu et al. 2017). Furthermore, SDHD-G12S or -H50R variants suppressed autophagy in normal thyroid follicles and PTC cells by downregulating the expression of FOXO3a target genes (BECN1 and ATG12 in TPC-1 cells and BECN1 in Nthy-Ori-3 cells) in a PTEN-dependent manner (Yu et al. 2017). In line with previously proposed models (Netea-Maier et al. 2015), these results together highlight the suppressive role of autophagy in the initiation of thyroid cancer or in the early phases of its development.

Coatomer protein complex I (COPI) complex members are involved in autophagy in several cancer types including in prostate, breast and ovarian carcinoma cells (Razi et al. 2009, Shutman et al. 2011, Claerhout et al. 2012). By screening with a siRNA oligonucleotide library in thyroid cancer cells (BCAP) and normal human thyrocytes (Nthy-ori 3-1), Anania et al. initially found that Cyclin D1, MASTL and COPZ1 (coatomer protein complex ζ1) are three oncogenes for thyroid cancer, and inhibition of these three genes reduced the viability of several thyroid tumor cell lines, regardless of the histotype or oncogenic lesion (Anania et al. 2015). Further study showed that COPZ1 silencing was associated with significantly increased LC3 puncta and conversion of the endogenous LC3-I to LC3-II in TPC-1 and 8505C cells (Anania et al. 2017). Actually, COPZ1 depletion caused abortive autophagy as an increase of SQSTM1/p62 in both COPZ1-depleted cell lines was observed. More importantly, COPZ1 depletion induced apoptotic cell death and suppressed tumor growth in 8505C ATC xenografts. These results indicated that downregulation of COPZ1 and concomitant disruption of autophagy may be an attractive approach for treating thyroid cancers.

Epithelial-to-mesenchymal transition (EMT) is associated with the development and invasion of thyroid cancers, especially PTC and ATC (Hardy et al. 2007, Hardin et al. 2017). EMT and autophagy are two distinct events but a cross-talk exists between these two events in a controversial way (Marcucci et al. 2017). Cadherin-6 (CDH6), a type 2 cadherin, is a target of transforming growth factor-β (TGF-β) signaling pathway and therefore is a marker of EMT in thyroid cancers (Sancisi et al. 2013). More recently, Gugnoni et al. reported that silencing of CDH6 expression not only profoundly attenuated EMT features but also induced LC3 and GABARAP lipidation in PTC cells, which was accompanied by a decreased level of p-AKT. In parallel, CDH6 is a potential marker for predicting distant metastases from PTC (Gugnoni et al. 2017). These results together potentially indicate the role of CDH6 in mediating PTC progression and the underlying interaction of EMT and autophagy behind this phenotype.

One typical character of DTC is the consistent female-to-male ratio of 3:1 across almost all geographic areas and ethnicities; one of the potential factors accounting for the gender disparity is estrogen receptors (Manole et al. 2001). A recent study has elucidated that estrogen could induce autophagy in PTC in an estrogen receptor α dependent manner, which could, therefore, provide energy and building blocks (Fan et al. 2015). By binding to nuclear receptors (TRs, including TRα and TRβ), thyroid hormone is a potent regulator of cellular and tissue metabolism throughout the body. Thyroid hormone, especially T3, has been shown to exert profound effects on mitochondrial biogenesis and energy metabolism (Weitzel & Iwen 2011, Sinha et al. 2015). T3 induced autophagic flux in hepatocytes and inhibited HBV-encoded X protein (HBx)-induced hepatic carcinogenesis in mice (Chi et al. 2017). However, thyroid hormone-related autophagy in the development of thyroid cancers remains to be determined.

Autophagy in molecularly targeted therapy of thyroid cancers

As aforementioned, numerous genetic alterations including BRAFV600E mutation are involved in the tumorigenesis of thyroid cancers (Cabanillas et al. 2016, Fagin et al. 2016). In clinical trials, BRAFV600E inhibitors have achieved preliminary success in the treatment of PTCs (Kim et al. 2013, Dadu et al. 2015), and the antitumor activity of vemurafenib with a partial response rate of 38.5% for patients with BRAFV600E-positive PTC was observed in a recent phase 2 clinical trial (Brose et al. 2016). Molecularly targeted therapies also emerge as the standard of care for ATC patients either with metastatic or radiation-resistant diseases (Hanna et al. 2018, Iyer et al. 2018, Subbiah et al. 2018). However, there is increasing evidence that thyroid cancer patients undergoing TKI
treatment may ultimately escape the effects of therapy and then develop resistance (Kreissl et al. 2019).

A recent study has revealed that higher expression levels of all autophagy-related proteins were observed in BRAFV600E mutation-positive PTCs compared to those without the BRAFV600E mutation (Kim et al. 2017). Similarly, BRAF or RAS mutant thyroid cancer cell lines tend to have a higher level of autophagy following drug treatment (Bikas et al. 2015, Plews et al. 2015). Wei et al. recently found that following vemurafenib treatment, mitochondrial respiration and ATP production in thyroid cancer cells (K1 cells) increased significantly (Wei et al. 2017), indicating increased mitochondrial metabolism as a potential mechanism for vemurafenib resistance. Obatoclax, an experimental Bcl2 inhibitor, could successfully overcome vemurafenib-induced resistance by reducing ATP production and suppressing the activity of autophagy in thyroid cancer cells (Wei et al. 2017). Champa et al. further found that obatoclax induced necrosis of thyroid cancer cells by localizing to the lysosomes, inducing loss of acidification and blocking lysosomal fusion with autophagic vacuoles (Champa et al. 2016). Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), can inhibit lysosomal acidification and prevent the degradation of autophagosomes (Manic et al. 2014), thereby suppressing autophagy. Both CQ and HCQ are currently under clinical trials to inhibit autophagy (Levy et al. 2017). Wang et al. found that vemurafenib induced a high level of autophagy in BRAF-mutation-positive thyroid cancer cells and inhibition of autophagy by either HCQ or knockdown of essential autophagy genes augmented the efficacy of vemurafenib (Wang et al. 2017). In this study, the authors revealed that vemurafenib-induced autophagy was independent of the MAPK signaling pathway but was associated with endoplasmic reticulum (ER) stress response activation. These results indicate that autophagy-inhibiting strategies are thus predicted to inhibit mitochondrial metabolism or to enhance the cytotoxic effect of vemurafenib.

From current evidence, it seems that autophagy plays a double role in mediating the anti-thyroid cancer effect of sorafenib (Lin et al. 2012, Yi et al. 2018). Different from sorafenib and lenvatinib which have multiple targets, apatinib is another TKI selectively targeting vascular endothelial growth factor receptor 2 (VEGFR-2). Two recent studies have reported the potent therapeutic efficacy of apatinib in treating RR-DTCs (Lin et al. 2017, Zhang et al. 2018). Despite the exciting disease control rate (100%) and objective response rate (70.0%) for the 500mg qd schedule, the frequent and severe adverse events may limit its consecutive clinical use (Zhang et al. 2018). In a preclinical setting, Feng et al. reported that inhibition of apatinib-induced autophagy using CQ led to increased apoptosis of ATC cells both in vitro and in vivo (Feng et al. 2018), indicating the superior therapeutic effect of the combinational treatment. Upon further clinical investigation, this strategy may serve as a promising treatment option for both RR-DTC and ATC, which may enhance the efficacy of apatinib while alleviating the toxicities caused by high-dose apatinib monotherapy.

It is notable that several natural compounds are capable of suppressing thyroid cancers, such as mulberry anthocyanins (Long et al. 2018) and flavokawain B (He et al. 2018). Flavokawain B-induced autophagy plays a pro-survival role in several malignancies including thyroid cancers (He et al. 2018, Wang et al. 2018a). Consequently, combinational administration of flavokawain B and CQ resulted in more profound inhibition of tumor growth in FTC models (He et al. 2018). Honokiol is another bioactive natural compound obtained from Magnolia officinalis (Prasad & Katiyar 2016). Recently, Lu et al. showed that honokiol treatment could suppress cell growth, induce cell cycle arrest, enhance the induction of both caspase-dependent and -independent apoptosis, and autophagy in ARO and SW579 cell lines. But honokiol treatment did not induce autophagic flux in WRO cells. The study also revealed that honokiol could affect the regulation of MAPK signaling pathways in the ATC, FTC and PDTC cells (Lu et al. 2017). However, a recent study indicated that the ARO cell line matches HT-29 colon cancer cell line, which was probably caused by laboratory cross-contamination (Schweppe et al. 2008). Therefore, key experiments using contaminated ATC cell lines might have to be repeated with better characterized ATC cell lines (Lu et al. 2017, He et al. 2018).

In recent years, accumulating evidence has indicated the potential role of miRNAs and IncRNAs as theranostic targets in thyroid cancers (Wei et al. 2016, Zhang et al. 2016). Specifically, miR-125b is downregulated in the majority of follicular thyroid carcinomas and adenomas (Wang et al. 2018b). Overexpression of miR-125b sensitized thyroid cancer cells to cisplatin and sorafenib. Moreover, overexpression of miR-125b enhanced the therapeutic effect of cisplatin in in vivo studies, which was partially mediated by downregulation of Foxp3 and the resultant increased activity of autophagy induced by stimulated Atg7 (Wang et al. 2018b). Similarly, overexpression of IncRNA GAS8-AS1 could inhibit the proliferation of PTC cells and induce autophagy simultaneously, and silencing of ATG5 rescued such inhibitory effect caused by...
Intronic non-coding RNA GAS8-AS1 (Qin et al. 2018). In contrast, miR-30d negatively regulated cisplatin-activated autophagic response by downregulating BECN1, as a result, sensitizing ATC cells to cisplatin treatment both in vitro and in vivo (Zhang et al. 2014). Considering these promising yet controversial results, we would like to advocate the use of comprehensive detection and intervention methods when examining the role of autophagy in mediating the treatment outcome of small-molecular therapeutics in thyroid cancers (Wei et al. 2018a).

Autophagy in redifferentiation of radioiodine-refractory thyroid cancers

Findings from a large TCGA study showed that PTCs with BRAFV600E mutation were associated with a less differentiated state, for instance, loss of NIS expression (Cancer Genome Atlas Research Network 2014). It is gratifying that selective MEK inhibitor selumetinib and BRAF inhibitor dabrafenib showed redifferentiation effects and enhanced 131I uptake in patients with RR-DTC (Ho et al. 2013, Rothenberg et al. 2015). More recently, Huillard and colleagues investigated the ability of vemurafenib in inducing tumor redifferentiation and in restoring RAI uptake in an 83-year-old man with BRAFV600E-mutant RR-DTC and found that vemurafenib and dabrafenib could significantly enhance RAI uptake and reduce 18F-FDG uptake (Huillard et al. 2017). The redifferentiation effect of vemurafenib was further validated by a most recent study (Dunn et al. 2018), in which four of the ten evaluable RR-DTC patients responded to vemurafenib treatment likely by upregulating thyroid-specific gene expression. In a preclinical study, Chakravarty et al. reported the efficacy of MAPK pathway inhibitors in restoring RAI uptake in mice (Chakravarty et al. 2011). However, another preclinical study reported the discordance of MEK inhibition and BRAF inhibition in inducing iodine uptake in ATC models (ElMokh et al. 2018).

More recently, several studies elucidated the potential role of autophagy in mediating the dedifferentiation of DTC and the clinical efficacy of 131I therapy. Clinically, Plantinga et al. initially showed that genetic variations in ATG16L1 (300Ala (G) allele of ATG16L1) and in ATG5 (ATG5 single nucleotide polymorphisms rs2245214) were associated with a higher probability to develop thyroid carcinoma (Huijbers et al. 2012, Plantinga et al. 2014). The same group then found that although LC3-I intensity and LC3-II-positive puncta were not associated with thyroid cancer pathology except for a small group of ATC patients, both indexes were associated with clinical response to 131I therapy. More importantly, while membranous SLC5A5 (NIS) expression was decreased in tumors with low autophagy activity, the expression of SLC5A5 was strongly elevated in tumors with high numbers of LC3-II-positive puncta, indicating autophagy has an important impact on the dedifferentiation of thyroid cancers (Plantinga et al. 2016).

As we all know, digitalis-like compounds are well-characterized regimens in the treatment of heart failure and atrial arrhythmia (Prassas & Diamandis 2008). Tesselaar et al. found that digitalis-like autophagy-activating compounds, digoxin in particular, restored NIS expression and iodide uptake in thyroid cancer cell lines, and a follow-up study revealed that upregulation of NIS was meditated by intracellular Ca2+ and FOS activation (Tesselaar et al. 2017a). Based on this preliminary evidence that digitalis-like compounds had beneficial effects in redifferentiating RR-DTC, Tesselaar et al. also investigated this effect using ATC cell lines (Tesselaar et al. 2018). The authors observed reduced autophagy activity in ATC tissues and found that while several TKIs (e.g., selumetinib) failed to restore NIS expression, most of the tested digitalis-like compounds (e.g., digoxin) were able to induce NIS at both mRNA and protein levels in the two tested ATC cell lines (Cal-62 and 8505C), which was further accompanied by increased 125I uptake (Tesselaar et al. 2018).

These results together demonstrate that the activity of autophagy may serve as a marker to predict the therapeutic response of 131I treatment. Furthermore, investigation of the role of autophagy in the dedifferentiation process of thyroid cancers could potentially facilitate development of novel therapeutics to treat and to redifferentiate RR-DTCs and ATCs. Considering that digitalis-like compounds have been used in clinic for many years, they, therefore, represent promising alternates for patients with RR-DTC or ATC.

Autophagy in radiosensitization of thyroid cancers

External beam radiotherapy (EBRT) or intensity-modulated radiotherapy (IMRT) has an established role in treating ATC (Brierley 2011). Although the role of EBRT in locally advanced DTCs is controversial, a recent study elucidated that the addition of EBRT to RAI resulted in good disease control for locally advanced DTCs (Tam et al. 2017).
It has been reported that utilization of autophagy inhibitors could increase the radiosensitivity of several types of cancers to radiation therapy (Apel et al. 2008, Liang et al. 2015, Ondrej et al. 2016). However, autophagy activators, rather than inhibitors, may potentially enhance the therapeutic effects of anticancer agents which promote, or at least are compatible with, tumor-targeting immune responses (Galluzzi et al. 2017a). Ko et al. also reported that radiotherapy-induced anticancer immune response was autophagy-dependent in the immunocompetent context or, in other words, autophagy conferred immunogenic properties to tumors following radiotherapy (Ko et al. 2014). Consistent with this, inhibition of autophagy, either local or systemic, may trigger detrimental effects in patients with cancer since autophagy is pivotal for establishing CDB8+ T cell memory and sustaining the development and survival of lymphocytes (Pua et al. 2007, Puleston et al. 2014). In this setting, further studies are needed to validate whether there is any synergistic benefit by adding modulators of autophagy to radiotherapy in treating patients with advanced thyroid cancers (especially ATC).

Conclusion and future research perspectives

The tumorigenesis of the thyroid is a complex process, which is regulated by multiple cellular events including activation of oncogenes, inactivation of tumor suppressors and changes in programmed cell death pathways (Yi et al. 2017). The RAS-RAF-MEK-ERK and PI3K-AKT pathways are the best understood oncogenic cascades orchestrating the proliferation and differentiation of thyroid cancers (Xing 2013, Fagin et al. 2016). In the meantime, both signaling pathways are strongly implicated in the regulation of autophagy activity (Morani et al. 2014, Tesselaar et al. 2017b). One of the key mechanisms of how autophagy

<table>
<thead>
<tr>
<th>Agent</th>
<th>Target</th>
<th>Tumor types</th>
<th>Status</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine (CQ)</td>
<td>Lysosome</td>
<td>Glioblastoma, brain Metastases, etc.</td>
<td>Clinical trials</td>
<td>Levy et al. (2017)</td>
</tr>
<tr>
<td>SBI-0206965</td>
<td>UKL1</td>
<td>Lung cancer, colorectal cancer Lung cancer</td>
<td>Preclinical</td>
<td>Egan et al. (2015)</td>
</tr>
<tr>
<td>ULK-101</td>
<td>UKL1</td>
<td>Colorectal cancer, breast cancer, pancreatic cancer, etc.</td>
<td>Preclinical</td>
<td>Martin et al. (2018)</td>
</tr>
<tr>
<td>Hydroxychloroquine (HCQ)</td>
<td>Lysosome</td>
<td>Lung cancer, osteosarcoma</td>
<td>Clinical trials</td>
<td>Levy et al. (2017), Onorati et al. (2018)</td>
</tr>
<tr>
<td>Quinacrine</td>
<td>Lysosome</td>
<td>Prostate cancer, leukemia, etc.</td>
<td>Preclinical</td>
<td>Wang et al. (2015), Yan et al. (2018)</td>
</tr>
<tr>
<td>3-methylenadine (3-MA)</td>
<td>Beclin/vps34 complex</td>
<td>Breast cancer, melanoma, etc.</td>
<td>Preclinical</td>
<td>Lamoureux et al. (2013), Missirollo et al. (2016)</td>
</tr>
<tr>
<td>Wortmannin</td>
<td>Beclin/vps34 complex</td>
<td>Ovarian cancer, breast cancer, etc.</td>
<td>Preclinical</td>
<td>Abedin et al. (2007), Lin et al. (2014)</td>
</tr>
<tr>
<td>Spautin-1</td>
<td>Beclin/vps34 complex</td>
<td>Renal cancer, head and neck cancer, etc.</td>
<td>Preclinical</td>
<td>Liu et al. (2011), Yeo et al. (2018)</td>
</tr>
<tr>
<td>SAR405</td>
<td>vps34</td>
<td>Breast cancer</td>
<td>Preclinical</td>
<td>Ronan et al. (2014), New et al. (2017)</td>
</tr>
<tr>
<td>Autophinib</td>
<td>vps34</td>
<td>Pancreatic cancer, etc.</td>
<td>Preclinical</td>
<td>Robke et al. (2017), Dowdle et al. (2014)</td>
</tr>
<tr>
<td>PIK-III</td>
<td>vps34</td>
<td>Colorctal cancer</td>
<td>Preclinical</td>
<td>Kuri et al. (2017)</td>
</tr>
<tr>
<td>UAMC-2526</td>
<td>ATG4</td>
<td>Not reported</td>
<td>Preclinical</td>
<td>Qiu et al. (2016)</td>
</tr>
<tr>
<td>Autophagin-1</td>
<td>ATG4</td>
<td>Osteosarcoma, glioblastoma</td>
<td>Preclinical</td>
<td>Akin et al. (2014), Huang et al. (2017)</td>
</tr>
<tr>
<td>NSCl85058</td>
<td>ATG4</td>
<td>Melanoma, ovarian cancer</td>
<td>Preclinical</td>
<td>McAfee et al. (2012), Ma et al. (2014)</td>
</tr>
<tr>
<td>Lys05</td>
<td>Lysosome</td>
<td>Melanoma, pancreatic cancer, and colorectal cancer</td>
<td>Preclinical</td>
<td>Rebecca et al. (2017), Nicolasti et al. (2018)</td>
</tr>
<tr>
<td>DQ661</td>
<td>Lysosome</td>
<td>Renal cancer</td>
<td>Preclinical</td>
<td>Carew et al. (2017), Carew & Nawrocki (2017)</td>
</tr>
<tr>
<td>ROC-325</td>
<td>Lysosome</td>
<td>Melanoma</td>
<td>Preclinical</td>
<td>Goodall et al. (2014)</td>
</tr>
<tr>
<td>VATG-027</td>
<td>Lysosome</td>
<td>Melanoma</td>
<td>Preclinical</td>
<td>Goodall et al. (2014)</td>
</tr>
<tr>
<td>VATG-032</td>
<td>Lysosome</td>
<td>Melanoma</td>
<td>Preclinical</td>
<td>Sharma et al. (2012)</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Lysosome</td>
<td>Breast cancer, etc.</td>
<td>Preclinical</td>
<td>Donohue et al. (2011)</td>
</tr>
<tr>
<td>Verteporfin</td>
<td>Lysosome</td>
<td>Thyroid cancer, etc.</td>
<td>Preclinical</td>
<td>Mauvezin et al. (2015)</td>
</tr>
<tr>
<td>Bafilomycin A1 (BafA1)</td>
<td>Lysosome, endoplasmic reticulum</td>
<td>Melanoma, colorectal cancer</td>
<td>Preclinical</td>
<td>Goodall et al. (2014)</td>
</tr>
</tbody>
</table>
promotes the growth and survival of thyroid cancers may lie in its ability to support cellular metabolism and mitochondrial bioenergetics (White et al. 2015, Yu et al. 2018). Mitochondria have long been associated with tumorigenesis by optimizing cancer cell environment and by mediating apoptosis (Wallace 2012). However, the mechanisms by which genetic events, such as BRAFV600E mutation, regulate autophagy-related metabolism are poorly understood in thyroid cancers (Yi et al. 2017). In addition, the cross-talk between autophagy and apoptosis in thyroid cancers still remains to be explored (Nikoletopoulou et al. 2013).

As growth defects from autophagy inhibition of transplanted tumors in immunocompromised mice tend to be less impressive than that observed in autochthonous models (Eng et al. 2016), thyroid cancer models with a thyroid-specific endogenous expression of oncogenes may be better when examining the effects of autophagy activity on thyroid tumorigenesis (Vanden Borre et al. 2014). Although recent findings have indicated the regulatory role of autophagy in the dedifferentiation and concomitant development of RR-DTC, the redifferentiative effect of these autophagy-activating compounds (digitalis-like compounds and cardiac glycosides) in oncogene-induced authenticated murine thyroid cancer models, or in patient-derived tumor xenografts (Marlow et al. 2018), is largely unknown. Moreover, assessing the redifferentiative effect of these clinically available agents in a clinical scenario is needed to validate preclinical observations. Apart from these clinically available agents, novel chemical compounds (Galluzzi et al. 2017b, Chiang et al. 2018), or autophagy-inducing peptides (Peraro et al. 2017), could also be used to pharmacologically stimulate autophagy. Since BRAF and MEK inhibitors have been validated as effective in restoring radioiodine incorporation in clinical trials (Ho et al. 2013, Rothenberg et al. 2015, Huillard et al. 2017, Dunn et al. 2018), future studies may also explore if there is a synergistic effect in redifferentiating RR-DTC when a combination of molecularly targeted agent with autophagy activator is applied. Previous seminal studies have demonstrated that 124Iodine-NaI PET could detect more lesions than 131I single photon emission computed tomography (SPECT), and the former imaging modality also allowed for quantitative dosimetry (Larson et al. 2017). Therefore, future studies may use 124Iodine-NaI PET to assess the redifferentiative effect and to optimize subsequent RAI therapy.

Although there are studies reporting autophagic cell death in mediating the anti-thyroid cancer effects of several small-molecular therapeutics (Lin et al. 2010, Jin et al. 2014, Xiang et al. 2018), future studies are still needed to validate such observations in thyroid cancers. When it comes to inhibiting autophagy for treating thyroid cancers, several promising inhibitors targeting the components of the autophagy pathway have been reported, including ULK1 inhibitors (Egan et al. 2015, Martin et al. 2018), Vps34 inhibitors (Liu et al. 2011, Ronan et al. 2014, Robke et al. 2017), ATG4B inhibitor (Vezenkov et al. 2015), lysosome inhibitors (McAfee et al. 2012, Fu et al. 2014, Kroemer & Galluzzi 2017, Rebecca et al. 2017) and CQ/HCQ (Table 1). For clinical trials, HCQ is chosen over CQ because of its relatively less toxicity than CQ at peak concentrations (Barnard et al. 2014, Manic et al. 2014). Several clinical trials involving HCQ in combination regimens or as a single-agent trial have been published (Amaravadi et al. 2016). Inhibition of autophagy could overcome vemurafenib resistance in several solid tumors including in thyroid cancers (Mulcahy Levy et al. 2017, Wang et al. 2017). In addition, human tumors generally possess elevated rates of basal autophagy activity, which are further correlated with poor outcome (Amaravadi et al. 2011, Lazova et al. 2012, Kim et al. 2017). Therefore, it is rational to design strategies inhibiting both autophagy and BRAF to enhance the efficacy of BRAF inhibitors and to overcome monotherapy-induced drug resistance in thyroid cancers. One promising future direction is to execute prospective clinical trials to assess the treatment efficacy of highly specific autophagy inhibitors, either alone or in combination with molecularly targeted agents (Mulcahy Levy et al. 2017).

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding
This work was sponsored by the Ph.D. Innovation Fund of Shanghai Jiao Tong University School of Medicine (No. BXJ201736), the Shanghai Key Discipline of Medical Imaging (No. 2017ZZ02005), Weijun Wei was also partially funded by the China Scholarship Council (No. 201706230067).

References

Donohue E, Tovey A, Vogl AW, Arns S, Sternberg E, Young RN & Roberge M 2011 Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. Journal of Biological Chemistry 286 7290–7300. (https://doi.org/10.1074/jbc.M110.139915)

Kreisl MC, Janissen MJF & Ngaraiah J 2019 Current treatment strategies in metastasized differentiated thyroid cancer. *Journal of...
Autophagy in thyroid cancers

Liang DH, El-Zein R & Dave B 2015 Autophagy inhibition to increase

Levy JMM, Towers CG & Thorburn A 2017 Targeting autophagy in

Cancer

https://doi.org/10.1186/1078-0432.CCR-12-1214

https://doi.org/10.1172/JCI85271

Lin CJ, Whang EE, Lorch JH Jr & Ruan DT 2012 Autophagic activation potentiates the antiproliferative effects of tyrosine kinase inhibitors and radiosensitization in breast cancer.

Prasad R & Katiyar SK 2016 Honokiol, an active compound of magnolia plant, inhibits growth, and progression of cancers of different organs. Advances in Experimental Medicine and Biology 928 245–265. (https://doi.org/10.1007/978-3-319-41334-1_11)

Razi M, Chan EY & Tooze SA 2009 Early endosomes and endosomal coatamer are required for autophagy. Journal of Cell Biology 185 305–321. (https://doi.org/10.1083/jcb.200810098)

and Metabolism 93 4331–4341. (https://doi.org/10.1210/jc.2008-1102)

Xing M 2013 Molecular pathogenesis and mechanisms of thyroid cancer. Nature Reviews: Cancer 13 184–199. (https://doi.org/10.1038/nrc3431)

Received in final form 9 January 2019
Accepted 21 January 2019
Accepted Preprint published online 21 January 2019