Local estrogen biosynthesis in males and females

E Simpson¹, G Rubin¹, C Clyne¹, K Robertson¹, L O’Donnell¹, S Davis² and M Jones¹

¹ Prince Henry’s Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia
² Jean Hailes Foundation, 173 Carinish Rd, Clayton, Victoria 3168, Australia

(Requests for offprints should be addressed to E Simpson)

Abstract

It is now apparent that in men and in postmenopausal women, estrogens have important physiological and pathophysiological roles. However, importantly, these actions are at a local level, namely paracrine, autocrine, and even ‘intracrine’ rather than endocrine in the classical sense. Thus for example local estrogen biosynthesis in the bones of men plays a hitherto unsuspected role in the maintenance of bone mineralization and in epiphyseal fusion; and in the testes, estrogen is essential for male germ cell development. On the other hand, in postmenopausal women, the mesenchymal cells of the breast are the major source of estrogen responsible for breast cancer development. This realization points to the importance of circulating C₁₉ precursors in the maintenance of adequate estrogen biosynthesis in extragonadal sites and suggests the possibility of new therapies to block estrogen synthesis in a tissue-specific fashion.

Introduction

In recent years, our understanding of the role of estrogens in both females and males has expanded greatly. For example, considerable emphasis has been focused on the regulation of extragonadal estrogen biosynthesis, in particular that which occurs in adipose tissue and bone, and its importance in the well-being of the elderly (Simpson et al. 1997). The regulation of aromatase expression in normal adipose tissue from various body sites including the breast has been examined as a function of age (Bulun & Simpson 1994), and significant changes in the regulation of the expression which occurs in adipose tissue proximal to a breast tumor (Agarwal et al. 1996) have been documented. This has led to the conclusion that tumorous epithelium of the breast, and/or macrophages recruited to the tumor site, produce factors such as prostaglandin E₂ (PGE₂), tumor necrosis factor α (TNFα) and class I cytokines, which regulate aromatase expression in the surrounding mesenchymal cells of the adipose tissue and of the tumor itself (Zhao et al. 1995, 1996a,b, Fig. 1).

Since bone is a favourite site for breast cancer metastasis, attention has also focused on aromatase expression in osteosarcoma cell lines, in primary cultures of human fetal osteoblasts, as well as osteoclastic cell lines such as THP-1 (Shozu et al. 1997, Shozu & Simpson 1998). We and others have observed that these cells exhibit high expression of aromatase activity which is regulated primarily by class I cytokines, interleukin-1β (IL-1β) and TNFα. These observations, together with the observation of a marked bone phenotype in men with mutations of either the estrogen receptor (ER) (α) or aromatase (Smith et al. 1994, Carani et al. 1997), have led to the conclusion that local estrogen production in bone cells plays an important role in the maintenance of bone mineralization and the prevention of osteoporosis in men and women. In an extension of these concepts, we have advanced the hypothesis, also enunciated by Labrie and colleagues (1997a), that in postmenopausal women, and also in men, extragonadal estrogen biosynthesis in a number of sites, including adipose tissue, bone, various sites of the brain, vascular endothelial and smooth muscle cells, plays an important but hitherto largely unrecognized physiologic and pathophysiologic role in a paracrine, autocrine and indeed, intracrine, fashion (Simpson & Davis 1998). The long-term health consequences of estrogen decline after the menopause include bone loss, urogenital aging, increased cardiovascular disease, and probably cognitive impairment culminating in dementia. The incidence and pattern of occurrence of all of these disease processes differ significantly between men and
women, and cannot be explained by gender differences in circulating estrogen levels alone. For example, men have plasma estradiol levels in the postmenopausal range throughout their adult years, but rarely develop osteoporosis until very late in life. Hence, our understanding of the peripheral metabolism of precursor steroids in the main estrogen target tissues appears fundamental to ascertaining the mechanisms underlying the development of diseases associated with the decline in circulating estrogen levels after menopause.

Of equal significance is the realization derived from studies of ER α-knock-out (ERKO) (Lubahn et al. 1993) and aromatase knock-out (ArKO) mice (Fisher et al. 1998), of the role of locally-produced estrogen in the regulation of male reproduction and in particular its role in spermatogenesis. This new understanding of the role of estrogens in the male blurs our definition of male versus female hormones, since, at least at the local level, both androgens and estrogens have important roles to play in both sexes.

Sites of estrogen biosynthesis

While the ovaries are the principal source of systemic estrogen in the premenopausal non-pregnant woman, other sites of estrogen biosynthesis are present throughout the body and these become the major sources of estrogen beyond menopause. These sites include the mesenchymal cells of the adipose tissue and skin (reviewed in Simpson et al. 1997), osteoblasts (Bruch et al. 1992) and perhaps osteoclasts (Jacob et al. 1995) in bone, possibly vascular endothelial (Bayard et al. 1995) and aortic smooth muscle cells (Murakami et al. 1998) as well as a number of sites in the brain including the medial preoptic/anterior hypothalamus, the medial basal hypothalamus and the amygdala (Naftolin et al. 1975). These extragonadal sites of estrogen biosynthesis possess several fundamental features which differ from those of the ovaries. Principally, these sites are dependent on circulating precursor C19 steroids for estrogen biosynthesis. Although these extragonadal tissues have the capacity to convert C19 steroids to C18 steroids, unlike the ovaries they lack the ability to synthesize C19 precursors. Hence, estrogen production in adipose, bone and brain is totally dependent on the availability of circulating C19 precursors. Another important feature is that the estrogen synthesized within these compartments, particularly bone, breast and brain, is probably only biologically active at a local tissue level in a paracrine or ‘intracrine’ fashion (Labrie et al. 1997). Thus, the total amount of estrogen synthesized by these

Figure 1 Proposed regulation of aromatase gene expression in breast adipose tissue from cancer-free individuals and from those with breast cancer. In the former case, expression is stimulated primarily by class I cytokines or TNFα produced locally, in the presence of systemic glucocorticoids. As a consequence, promoter I.4-specific transcripts of aromatase predominate. In the latter case, PGE2 produced by the tumorous epithelium, tumor derived fibroblasts, and/or macrophages recruited to the tumor site is the major factor stimulating aromatase expression, as evidenced by the predominance of promoter II and I.3-specific transcripts of aromatase.

DEX, dexamethasone; OSM, oncostatin M; LIF, leukemia inhibitory factor.
extragonadal sites may be small, but the local tissue concentrations achieved are probably quite high, and exert significant biologic influence locally.

After menopause, the mesenchymal cells of the adipose tissue become the main source of estrogen (Sitierti & MacDonald 1973, Simpson et al. 1997). Therefore, in the post-reproductive years, the degree of a woman's estrogenization is mainly determined by the extent of her adiposity. This is of clinical importance, since corpulent women are relatively protected against osteoporosis (Melton 1997) and the incidence of Alzheimer’s disease is lower in more corpulent postmenopausal women than in their slimmer counterparts (V Henderson, personal communication). On the down-side, obesity is positively correlated with the risk of breast cancer (Huang et al. 1997).

In the case of males, the Leydig cells (Tsai-Morris et al. 1985) and other cells of the testes, including germ cells in various stages of differentiation (Nitta et al. 1993), produce estrogen which, as mentioned previously, has an important role in spermatogenesis. Nevertheless, it has been estimated that at best the testes can account for 15% of circulating estrogens (Hensell et al. 1974) and hence, in the male, local production of estrogens, both intratesticular and extragonadal, is of physiologic significance throughout adult life. For example, estrogen production in bone appears to be vital for the maintenance of bone mineralization and prevention of osteoporosis. This is supported by studies of men, either with a mutation of the gene encoding the aromatase enzyme (Morishima et al. 1995, Carani et al. 1997) or a mutation of the ER (Smith et al. 1994). These individuals exhibit failure of epiphysial fusion, osteopenia and delayed bone age. Recently, we have observed that male ArKO mice also exhibit alterations in bone histomorphometry characteristic of undermineralization (Oz et al. 1998). In a similar fashion, it is reasonable to speculate that estrogen production in one or more brain sites has an influence on sexual behaviour and, as suggested by recent observational epidemiologic studies, may have a role in the maintenance of cognitive function and the prevention of Alzheimer’s disease (reviewed in Yaffe et al. 1998). In this context it is appropriate to reconsider why osteoporosis is more common in women than in men, and affects women at a younger age, in terms of fracture incidence. Similarly, one may question why the incidence of Alzheimer’s disease is greater among women than among men.

Precursor availability

A key factor in the gender difference in the incidence of these diseases appears to be the availability of precursor C₁₉ steroids for aromatization to estrogens in extragonadal sites, a concept also advanced by Labrie et al. (1998). In postmenopausal women the principal source of C₁₉ steroid production is the adrenal cortex, which elaborates androstenedione, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). However, the secretion of these steroids and their plasma concentrations decrease markedly with advancing age (Labrie et al. 1997b). Moreover, DHEA must first be converted to androstenedione prior to aromatization. Another major step is the reduction of the 17-keto group to 17β-hydroxyl, catalyzed by 17β-hydroxysteroid dehydrogenase (HSD) type I, which is essential for formation of the active estrogen, estradiol. The distribution of this enzyme in the various extragonadal sites of aromatization has not yet been fully established, although it is expressed in tumors (Sasano et al. 1996) and in bone (Sasano et al. 1997). It should be noted in this context that there is a recent report that 17β-HSD type III, which converts androstenedione to testosterone, is present in visceral fat (Corbould et al. 1998), together with 17-HSD type II.

Interestingly, in the male circulation, the levels of testosterone are at least one order of magnitude greater than those circulating in the plasma of postmenopausal women (10-30 vs 0.5 nmol/l), while the levels of androstenedione are rather similar (~2.5 nmol/l). Since the levels of circulating testosterone in the male are similar to the Km of aromatase (20-30 nmol/l), it is likely that circulating testosterone can be converted efficiently in extragonadal sites to give rise to local concentrations of estradiol sufficient to transactivate both ERs (α and β) (KD ~1 nmol/l). Moreover, although testosterone levels in the plasma of men decrease with advancing years, this decrease is small compared with the decrease in the circulating levels of adrenal C₁₉ steroids. Consequently, compared with women, males maintain a high circulating level of the active precursor testosterone throughout life, which is available for conversion to the active estrogen, estradiol, in extragonadal sites. Not only is the level of circulating testosterone in men much greater than that in women, but it is also two orders of magnitude greater than the mean levels of circulating estradiol in postmenopausal women (less than 130 pmol/l) and in men (~25-130 pmol/l). Given that most of this circulating estradiol is probably bound to sex hormone binding globulin, it is unlikely to have a major impact on transactivation of the ER, compared with estrogen produced locally as a consequence of conversion of circulating testosterone. Thus, the uninterrupted sufficiency of circulating testosterone in men throughout life supports the local production of estradiol by aromatization of testosterone in estrogen-dependent tissues, and thus affords ongoing protection against the so-called estrogen deficiency diseases. This appears to be important in terms of protecting the bones of men against mineral loss and may contribute to the
maintenance of cognitive function and prevention of Alzheimer’s disease in men (Fig. 2).

Currently, there is considerable interest in the use of testosterone as a component of hormone replacement therapy (HRT) for postmenopausal women, but its use is mostly limited to those women who complain of loss of sexual interest and libido. However, there is increasing evidence that postmenopausal testosterone replacement is effective in both the prevention and treatment of osteoporosis (Davis et al. 1995, Raisz et al. 1995). Thus, the present discussion suggests a broader role for the use of testosterone in HRT, namely as a circulating precursor for local synthesis of estrogen in target tissues where the latter acts in an autocrine and paracrine fashion.

Regulation of aromatase expression in adipose tissue

We have suggested previously (Simpson et al. 1997) that aromatase is a marker of the undifferentiated adipose mesenchymal cell phenotype. In support of this, the factors which stimulate expression in adipose tissue of cancer-free individuals are factors which either inhibit or reverse the differentiated phenotype of adipocytes, namely class I cytokines such as IL-6, oncostatin M and IL-11 or else TNFα. Moreover, all of these factors act via promoter I.4 of the aromatase gene and require glucocorticoids as co-stimulators (reviewed in Simpson et al. 1997). Adipocyte differentiation is driven by transcription factors such as C/EBP and also PPARγ (Spiegelman 1998), and while involving the down-regulation of aromatase expression, the differentiation process also involves the upregulation of markers such as lipoprotein lipase, the insulin receptor and GLUT4. These actions are antagonized by TNFα which is also expressed in adipocytes (Hotamisligil et al. 1993). Significantly in this context, mice lacking TNFα function are protected from obesity-induced insulin-resistance (Uysal et al. 1997). These considerations suggest that factors which stimulate adipocyte differentiation such as ligands of the PPARγ receptor (e.g. BRL 49653 and 15-deoxy-Δ12,14-PGJ2) would inhibit aromatase expression and this has proven to be the case (Fig. 3). They also indicate that individuals with insulin-resistance have higher levels of aromatase expression in their adipose tissue, and therefore are at greater risk of developing breast cancer. While the former has not been shown, there is epidemiologic evidence to support the latter contention (Bruning et al. 1992).

Further light on the role of estrogens in adipose tissue metabolism has come from our recent studies employing the ArKO mouse, in which there is a redistribution of adipose tissue with diminished subcutaneous and increased visceral fat deposits (Table 1). To investigate the mechanism whereby the subcutaneous fat depots are decreased, we examined the actions of estrogen on the differentiation of 3T3 L1 cells, and observed that estradiol
mimics the effects of troglitazone in this context. So an important issue which arises is to determine the mechanism whereby estradiol elicits this response and in particular to determine whether estradiol or a downstream metabolite is an endogenous ligand of PPARγ. These results would also lead us to predict that estrogen would mimic thiazolidinediones in inhibiting aromatase expression in adipose stromal cells. Preliminary results have shown that estradiol in high concentrations does this (Fig. 3). Thus, there appears to be an important homeostatic mechanism operating in these cells to regulate the levels of estrogen biosynthesis in the context of adipocyte differentiation.

Testicular estrogen and spermatogenesis

Following our recent observations that male ArKO mice develop a progressive infertility such that by the age of 1 year most are infertile, we have examined the phenotype of these animals. We observed that the seminiferous tubules are grossly dismorphic, with a complete absence of sperm and developmental arrest at the level of the round spermatids. In some cases multinucleate cells can be seen sloughing into the lumen. There is also marked Leydig cell hyperplasia, presumably as a consequence of the elevated luteinizing hormone (LH) levels. In some cases, a normal tubule is seen side by side with a dismorphic one. This phenotype is first noticed at around 20-23 weeks of age, and differs from that of the ERKO mice, which are infertile throughout life and have distended seminiferous tubules, apparently as a consequence of pressure build-up due to failure of fluid transport across the epithelium of the head of the epididymus. These observations point to important roles for intra-testicular estrogen production in male reproduction, and, in particular, spermatogenesis.

Clinical considerations

An important issue pertaining to the role of estrogen in the development of breast cancer in postmenopausal women is the relationship between HRT and breast cancer risk. A collaborative analysis of a large body of the available epidemiologic data which address this issue found that, despite the influence of estrogen produced locally on the development of breast cancer, systemic administration of estrogens plus progestins to postmenopausal women leads to at most a 1.35-fold increase in breast cancer risk (Collaborative Group on Hormonal Factors in Breast Cancer 1997). The reason for this small effect may have been revealed by the studies discussed here. Locally
produced estrogen within the breast stimulates breast cancer development and is regulated by the mechanisms which have been discussed. The resulting intratumoral estradiol concentrations are one order of magnitude higher than in the circulating plasma (Pasqualini et al. 1996). Thus, the increase in circulating estrogen as a consequence of HRT may have little influence on intratumoral levels. The action of locally-produced estrogen is largely paracrine in nature, and mediated via the classical ER(s) or else via DNA adduct formation by quinone intermediates (ServIce 1998). Additionally, estrogens may have an autocrine or ‘intracrine’ action on adipose cells themselves whereby estradiol or a downstream metabolite generated within the cell site of synthesis may act by an alternative mechanism, possibly involving PPARγ, to inhibit aromatase expression.

In conclusion, we believe that the results of recent studies reveal the significance of local estrogen production in the physiology and pathophysiology of elderly women and men, in particular its importance in the maintenance of bone mineralization and in the development of breast cancer, as well as its role in male reproduction. Local estrogen production may also play a role in the prevention of cardiovascular disease and in the maintenance of cognitive function. These studies not only throw light on the role of locally-produced estrogens in health and disease processes, but may also lead to new and hitherto unexpected modalities of therapy. This is already apparent from the observation that tumor-derived PGE2 is the major factor stimulating local aromatase expression in the breast fat of cancer patients, which leads to the consideration that PG synthesis inhibitors such as aspirin and ibuprofen would be beneficial in breast cancer prevention or treatment (Zhao et al. 1996b), and indeed there is an epidemiologic study which supports this (Harris et al. 1996). Similarly, the observation that PPARγ ligands, namely the thiazolidinediones, inhibit aromatase expression would suggest that these compounds, which are now available in the USA for the treatment of insulin-resistant diabetes, would also be beneficial in breast cancer prevention.

Acknowledgements
This work was supported by the Victorian Breast Cancer Research Consortium Inc., by Project Grant No. 981126 from the NH&MRC (Australia) and by Grant No. AGO8174 from the NIA (USA). The authors thank Faye Coates for skilled editorial assistance.

References
Bulun SE & Simpson ER 1994 Competitive RT-PCR analysis indicates levels of aromatase cytochrome P450 transcripts in adipose tissue of buttocks, thighs, and abdomen of women increase with advancing age. Journal of Clinical Endocrinology and Metabolism 78 428-432.
Labrie F, Belanger A, Cusan L & Candas B 1997a Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. *Journal of Clinical Endocrinology and Metabolism* 82 2403-2409.

Zhao Y, Agarwal VR, Mendelson CR & Simpson ER 1996b Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase gene). *Endocrinology* 150 S51-S57.