Histological and biological evolution of human premalignant breast disease

D C Allred¹,², S K Mohsin¹,² and S A W Fuqua¹,³

¹The Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
²Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
³Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA

(Requests for offprints should be addressed to D C Allred, Breast Center, Baylor College of Medicine, One Baylor Plaza, MS600, Houston, Texas 77030, USA; Email: dcallred@breastcenter.tmc.edu)

Abstract

Most human invasive breast cancers (IBCs) appear to develop over long periods of time from certain pre-existing benign lesions. Of the many types of benign lesions in the human breast, only a few appear to have significant premalignant potential. The best characterized of these include atypical hyperplasias and in situ carcinomas and both categories are probably well on along the evolutionary pathway to IBC. Very little is known about earlier premalignant alterations. All types of premalignant breast lesions are relatively common but only a small proportion appear to progress to IBC. They are currently defined by their histological features and their prognosis is imprecisely estimated from indirect epidemiological evidence. Although lesions within specific categories look alike, they must possess underlying biological differences causing some to remain stable and others to progress. Recent studies suggest that they evolve by highly diverse genetic mechanisms and research into these altered pathways may identify specific early defects that can be targeted to prevent premalignant lesions from developing or becoming cancerous. It is far more rational to think that breast cancer can be prevented than cured once it has developed fully. This review discusses histological models of human premalignant breast disease that provide the framework for scientific investigations into the biological alterations behind them and examples of specific biological alterations that appear to be particularly important.

Endocrine-Related Cancer (2001) 8 47–61

Introduction

Invasive breast cancer (IBC) is one of the most common and lethal malignant neoplasms affecting women in Western cultures. The majority of IBCs are thought to develop over long periods of time from certain pre-existing benign lesions. There are many types of benign lesions in the human breast and only a few appear to have significant premalignant potential. The best characterized premalignant lesions recognized today are referred to as atypical ductal hyperplasia (ADH), atypical lobular hyperplasia (ALH), ductal carcinoma in situ (DCIS), and lobular carcinoma in situ (LCIS). All these lesions possess some malignant properties such as a relative loss of growth control, but they lack the ability to invade and metastasize and, in this sense, are premalignant.

Several types of evidence point to this handful of lesions as being important precursors of human IBC (Table 1). For example, pathologists recognized many years ago that they were on a histological continuum between normal epithelium in terminal duct lobular units (TDLUs) and IBC (Foote & Stewart 1945, Wellings & Jensen 1973, Wellings et al. 1975) and that they were much less common in non-cancerous breasts than in breasts with synchronous IBC (Foote & Stewart 1945, Wellings & Jensen 1973, Wellings et al. 1975, Alpers & Wells 1985). Other studies showed that women with a history of atypical hyperplasias and in situ carcinomas had approximately 5- and 10-fold increased relative risks, respectively, of eventually developing IBC (Page et al. 1982, 1985, Dupont & Page 1985, Palli et al. 1991, London et al. 1992, Dupont et al. 1993). The elevated risks associated with ADH, ALH, and LCIS are bilateral, suggesting that they may only be markers rather than precursors of IBC (Page & Dupont 1993). However, these lesions are frequently multifocal and bilateral (Foote & Stewart 1945, Wellings & Jensen 1973, Wellings et al. 1975) which, in light of their histological continuity with IBC and increased incidence in cancerous breasts, suggests that they may be both risk factors as well as precursors. DCIS is usually a unifocal disease and the associated risk for developing IBC is primarily ipsilateral, consistent with the notion that DCIS is a relatively advanced and committed precursor. The most compelling evidence that
all these lesions may be precursors comes from recent studies showing that they share identical genetic abnormalities with synchronous ipsilateral IBC (O’Connell et al. 1998). Over the past twenty years or so, all of this evidence has culminated in a histological model of human breast cancer evolution which proposes that stem cells in normal TDLUs give rise to atypical hyperplasias (ADH and ALH), which progress to in situ carcinomas (DCIS and LCIS), which eventually develop into invasive and metastatic disease (Fig. 1).

There are many morphological differences between TDLUs and atypical hyperplasias and there are no unequivocal intermediate lesions between them. In the early 1970s, Wellings and co-workers proposed that a common alteration of TDLUs which they called ‘atypical lobules type A’ (ALA) may be involved in the transition from TDLUs to ADH and beyond (Wellings et al. 1975). ALAs, which are referred to as unfolded lobules (ULs), among other names, in today’s terminology, resemble TDLUs in overall architecture but are much larger due to the proliferation and accumulation (i.e. hyperplasia) of the epithelial cells lining their acini. The structure of normal TDLUs themselves varies considerably as a function of hormonal status (e.g. menstruation, pregnancy, etc.) and they are grouped into four histological categories (types I through IV) on a continuum of differentiation towards lactation (Russo et al. 1987, 1992).

Type I TDLUs, the least differentiated, have relatively high proliferation rates and are somewhat more common in cancerous breasts, suggesting that they may preferentially give rise to early growth alterations with premalignant potential such as ULs (Dickson & Russo 2000). Once developed, ULs have the potential to evolve along several diverse pathways including to microcystic disease, to a common type of hyperplastic lesion referred to as usual ductal hyperplasia (UDH), as well as to ADH. Furthermore, these pathways appear to be relatively mutually exclusive. Although UDH has been shown to be a weak risk factor for developing IBC (approximately twofold) (Page & Dupont 1993), it does not fit well on the histological continuum to IBC and thus may be a side branch on the evolutionary tree through shared ancestry with ULs rather than an important precursor of IBC.

In contrast to ADH, which seems to develop from ULs, ALH appears to arise directly within normal appearing TDLUs as small mildly atypical epithelial cells which begin to fill and partially distend the ducts and acini, and there is some speculation that this may occur preferentially in relatively well differentiated type II TDLUs (Russo & Russo 1997). If the cells accumulate until the spaces are distended to a large extent, the lesions are referred to as LCIS. Thus, the evolutionary pathways of lobular lesions (i.e. ALH and LCIS) seem to be different from those of ductal lesions (i.e. ADH and DCIS) and lobular lesions are less common. In a sense, the terms ‘ductal’ and ‘lobular’ are misleading because they imply an origin and localization to either ducts or lobules when, in fact, all types of premalignant breast lesions can occupy both locations and ultimately appear to arise from stem cells in TDLUs (Rudland 1993) or in ULs which themselves arise from TDLUs.

Wellings and colleagues also appreciated the distinct histological evolution of lobular lesions which they referred to as ‘atypical lobules type B’ (ALB) (Wellings & Jensen 1973, Wellings et al. 1975). ALH and LCIS are bilateral risk factors for developing IBC and the IBCs that eventually develop are as likely to be infiltrating lobular carcinomas (ILCs) as non-lobular subtypes (Page et al. 1986). However, when they are found in a breast with synchronous IBC, the latter is usually an ILC or an invasive lesion with prominent lobular features. Taken together, ALH and LCIS appear to be markers of widespread genetic damage to breast epithelium (i.e. risk factors) as well as precursor lesions.

This linear histological model of breast cancer evolution undoubtedly oversimplifies a very complex process. For example, it is quite possible that some IBCs arise directly from morphologically normal appearing cells. In addition, many premalignant lesions do not progress to IBC during the average lifespan of a woman, so progression is non-obligatory. Some lesions may even revert to less advanced phenotypes. The histological appearances of premalignant lesions within specific categories are very similar (by definition), so there must be underlying biological abnormalities causing some to remain stable and others to progress. Despite its shortcomings, however, this model has been very useful as a framework for scientific studies into the biological causes of tumor progression, which may eventually lead to strategies for breast cancer prevention. There have been hundreds of studies during the past decade.
Figure 1 Histological model of breast cancer evolution and representative photomicrographs of important premalignant lesions. Terminal duct lobular units (TDLUs) are thought to be the major stem cell compartment giving rise to all types of premalignant breast lesions. Unfolded lobules (ULs) are TDLUs that are greatly expanded due to hyperplasia of their lining epithelium and may represent the earliest morphologically recognizable premalignant change. Atypical ductal hyperplasias (ADHs) are small clonal outgrowths of low-grade epithelium (circle) that often arise in ULs. Ductal carcinoma \textit{in situ} (DCIS) are large outgrowths of epithelium that greatly distend ductal and lobular spaces and vary on a histological continuum from low to high grade lesions. Atypical lobular hyperplasias (ALHs) represent relatively normal sized TDLUs that are partially filled by low grade neoplastic epithelium. Lobular carcinoma \textit{in situ} (LCIS) represent TDLUs that are greatly distended by cells that are cytologically identical to those of ALH. ALH and LCIS are essentially the same disease on a quantitative continuum.

evaluating dozens of biological pathways in premalignant breast disease. This review discusses a few that appear to be particularly important and that have been studied in a relatively comprehensive manner.

Growth characteristics of premalignant breast disease

Even though microscopic in size, all types of premalignant breast lesions are ‘tumors’ which expand TDLUs and proximal ducts to many times their normal size (Fig. 2). Many studies, using a variety of techniques, have measured the magnitude of proliferation in TDLUs and premalignant lesions (Table 2). Proliferation in TDLUs averages only about 2% overall (Meyer 1977, Ferguson & Anderson 1981, Joshi \textit{et al.} 1986, Longacre & Bartow 1986, Russo \textit{et al.} 1987, Going \textit{et al.} 1988, Potten \textit{et al.} 1988, Kamel \textit{et al.} 1989, Schmitt 1995, Visscher \textit{et al.} 1996, Mohsin \textit{et al.} 2000a). In premenopausal women, the rate fluctuates with the menstrual cycle and is twofold higher in the luteal than in the follicular phase (Potten \textit{et al.} 1988). The association between hormonal status and proliferation emphasizes the importance of estrogen and progesterone as mitogens for normal breast epithelium (Pike \textit{et al.} 1993). Proliferation has not been evaluated in ULs with the exception of one preliminary study reporting an average rate
Allred et al.: Premalignant breast disease

Figure 2 All types of premalignant breast lesions are ‘tumors’ which expand terminal duct lobular units (TDLUs) and proximal ducts to many times their normal size. This example shows a normal TDLU on the left compared with one being distended by ductal carcinoma in situ (DCIS) on the right.

Table 2 Growth (proliferation and apoptosis) in premalignant breast lesions

<table>
<thead>
<tr>
<th></th>
<th>TDLU</th>
<th>UL</th>
<th>ADH</th>
<th>DCIS</th>
<th>ALH</th>
<th>LCIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average % proliferation</td>
<td>2%</td>
<td>5%</td>
<td>5%</td>
<td>15%</td>
<td>low</td>
<td>2%</td>
</tr>
<tr>
<td>Average % apoptosis</td>
<td>0.6%</td>
<td>low</td>
<td>0.3%</td>
<td>5%</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

of about 5%, which is still two- to threefold higher than in normal TDLUs (Mohsin et al. 2000a). Studies of ADH also observed rates averaging about 5% (De Potter et al. 1987, Hoshi et al. 1995, Mohsin et al. 2000a). Proliferation has been studied more extensively in DCIS than in any other type of premalignant breast lesion (Meyer 1986, Locker et al. 1990, Bobrow et al. 1994, Poller et al. 1994, Zafrani et al. 1994, Albonico et al. 1996, Berardo et al. 1996a, Mohsin et al. 2000a). Rates average about 5% in histologically low-grade ‘non-comedo’ DCIS compared with 20% in high-grade ‘comedo’ lesions. The widespread practice of dichotomizing DCIS into non-comedo and comedo subtypes is misleading in the sense that, similar to IBC, DCIS shows tremendous histological diversity along a continuum ranging from very well to very poorly differentiated, and grading systems have been developed which more accurately convey this diversity (Berardo et al. 1996a). Proliferation is proportional to differentiation along this histological continuum with rates averaging as low as 1% in the lowest grade to more than 70% in the highest grade lesions (Bobrow et al. 1994, Berardo et al. 1996a). Proliferation has not been formally studied in ALH but is probably similar to LCIS where the reported average is about 2% (Fisher et al. 1996, Rudas et al. 1997, Libby et al. 1998, Querzoli et al. 1998).

The overall growth of premalignant breast lesions can be viewed simplistically as a balance between cell proliferation and cell death. On average, the cells in all types of premalignant lesions proliferate faster than normal cells in TDLUs (Fig. 3), contributing to their positive growth imbalance. Much less is known about cell death in this setting (Table 2). One preliminary study reported significantly lower rates of apoptosis in ADH compared with TDLUs in the same breasts (0.3% vs 0.6% respectively), suggesting that the growth of ADH may be the result of both increased proliferation and decreased cell death compared with normal cells (Prosser et al. 1997). However, a few studies have reported rates of apoptosis in DCIS that are up to 10-fold higher than typically seen in normal cells (Bodis et al. 1996, Harn et al. 1997, Prosser et al. 1997), yet DCIS have a large positive growth imbalance, suggesting that the
Figure 3 Examples of typical proliferation rates in premalignant breast lesions as assessed by immunohistochemistry using the Ki67 antibody (small dark nuclei represent dividing cells). Terminal ductal lobular units (TDLUs) in premenopausal (pre) women usually contain more proliferating cells than TDLUs in postmenopausal (post) women due to the mitogenic effects of estrogen. Unfolded lobules (ULs), atypical ductal hyperplasias (ADHs), and low-grade ‘non-comedo’ ductal carcinoma in situ (ncDCIS) contain, on average, two to three times more proliferating cells than normal TDLUs. Typically, a large proportion of cells are proliferating in high-grade ‘comedo’ DCIS (cDCIS). Proliferation is usually quite low in atypical lobular hyperplasia (ALH) and lobular carcinoma in situ (LCIS).
relationship between cell proliferation and death may not always be accurately portrayed by the static methods used to measure these dynamic processes. Like proliferation, apoptosis seems to vary with histological differentiation in DCIS, being much lower in non-comedo than comedo lesions (averaging about 1% vs 5% respectively) (Prosser et al. 1997). Disturbances of the equilibrium between cell proliferation and cell death probably result from alterations of several normal growth-regulating mechanisms including those involving sex hormones, oncopgenes, tumor suppressor genes, and many other as yet unknown genetic and epigenetic abnormalities, some examples of which are discussed below.

Hormones and receptors in premalignant breast disease

Estrogen, mediated through the estrogen receptor (ER), plays a central role in regulating the growth and differentiation of normal breast epithelium (Henderson et al. 1988, Pike et al. 1993). It stimulates cell proliferation and regulates the expression of other genes including the progesterone receptor (PgR). PgR then mediates the mitogenic effect of progesterone, further stimulating proliferation (Henderson et al. 1988, Pike et al. 1993). Many additional factors collectively referred to as 'coactivators' and 'corepressors' have been discovered recently which appear to modulate the functions of these hormones and receptors, including their mitogenic activity (Horwitz et al. 1996).

Several studies have assessed ER expression in normal breast epithelium and premalignant lesions (Table 3). Most were immunohistochemical studies focusing presumably on ER-alpha, although the potential cross-reactivity for ER-beta of all the different antibodies used in these studies is not entirely clear. Mindful of this qualification, studies of normal TDLUs reported that nearly all (over 90%) express ER, but in a minority of cells (averaging about 30%) for all ages combined (Allegra et al. 1979, Peterson et al. 1986, Ricketts et al. 1991, Schmitt 1995, Mohsin et al. 2000a). In premenopausal women the average proportion of ER-positive cells in TDLUs is somewhat lower (about 20%) and varies with the menstrual cycle, being twice as high during the follicular phase as during the luteal phase (Ricketts et al. 1991). Proliferation in TDLUs peaks during the luteal phase (Potten et al. 1988), suggesting that the normal mitogenic effect of estrogen may be partially delayed, or indirect and mediated by downstream interactions such as that between progesterone and PgR. The average proportion of ER-positive cells in TDLUs in postmenopausal women is somewhat higher (about 50%) and stable in the absence of hormone replacement therapy (Mohsin et al. 2000a). Very little is known about ER expression in ULs, although one preliminary study reported that virtually all express the receptor in over 90% of cells (Mohsin et al. 2000a).

A few studies have evaluated ER in ADH and collectively agree that nearly all lesions express very high levels in nearly all cells (Barnes & Masood 1990, Schmitt 1995, Mohsin et al. 2000a). Many studies have evaluated ER in DCIS and, on average, about 75% of all cases express the receptor (Giri et al. 1989, Helin et al. 1989, Masood 1990, Pallis et al. 1992, Chaudhuri et al. 1993, Poller et al. 1993b, Zafrani et al. 1994, Leal et al. 1995, Albonico et al. 1996, Barnes & Berardo et al. 1996a, Bose et al. 1996, Karayianakis et al. 1996, Mohsin et al. 2000a). Expression varies with histological differentiation, being highest in non-comedo lesions, where up to 100% show expression in over 90% of cells, and lowest in comedo lesions, where only about 30% show expression in a minority of cells. ER is not expressed in about 25% of DCIS and these are predominantly high-grade comedo lesions. Over 90% of LCIS express high levels of ER in nearly all cells (Giri et al. 1989, Pertschuk et al. 1990, Pallis et al. 1992, Fisher et al. 1996, Rudas et al. 1997, Libby et al. 1998, Querzoli et al. 1998), which is probably similar in ALH although formal studies are lacking.

Prolonged estrogen exposure is an important risk factor for developing IBC, perhaps by allowing random genetic alterations to accumulate in normal cells stimulated to proliferate (Henderson et al. 1988), which may also be true for cells in premalignant lesions. The very high levels of ER observed in nearly all premalignant lesions (Fig. 4) may contribute to their increased proliferation relative to normal cells by allowing them to respond more effectively to any level of estrogen, even the low concentrations observed in postmenopausal women (Mohsin et al. 2000a). In addition to increased levels of expression, however, there may be other alterations of ER resulting in increased growth. For example, proliferation in TDLUs occurs predominantly in ER-negative epithelium (Clarke et al. 1997, Russo et al. 1999), whereas the majority of dividing cells in premalignant lesions are ER positive (Shocker et al. 1999), so the normal compartmentalization of hormonally regulated growth appears to be disrupted early on. As another example, one recent study measured proliferation in TDLUs and premalignant lesions from the same breasts in a large number of patients stratified by menopausal status (Mohsin et al. 2000a). Proliferation rates in TDLUs were nearly threefold lower in postmenopausal compared with premenopausal women, consistent with the expected mitotic effect of estrogen in normal cells. In contrast, the difference in proliferation in premalignant lesions stratified by menopausal status was less than half that of normal cells, again

<table>
<thead>
<tr>
<th>TDLU UL ADH DCIS ALH LCIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Containing ER-positive cells</td>
</tr>
<tr>
<td>Average % ER-positive cells</td>
</tr>
</tbody>
</table>
Figure 4 Examples of typical estrogen receptor (ER) expression in premalignant breast lesions as assessed by immunohistochemistry (small dark nuclei are ER-positive cells). Terminal duct lobular units (TDLUs) in premenopausal (pre) women usually contain relatively few ER-positive cells. In contrast, the majority of cells in TDLUs of postmenopausal (post) women express ER. Most premalignant breast lesions show very high levels of ER in nearly all cells, including unfolded lobules (ULs), atypical ductal hyperplasias (ADHs), low grade ‘non-comedo’ ductal carcinoma in situ (ncDCIS), atypical lobular hyperplasias (ALHs), and lobular carcinoma in situ (LCIS). The only significant exception is high grade ‘comedo’ DCIS (cDCIS) which often show low or no ER expression.
demonstrating that the hormonal regulation of proliferation in these lesions is fundamentally abnormal. Another particularly interesting recent study (Fuqua et al. 2000) found a somatic mutation in the ER gene in 30% of hyperplastic breast lesions (UDH) which, when transfected into breast cancer cell lines, showed much higher transcriptional activity and proliferation than wild-type ER at very low concentrations of estrogen such as seen in postmenopausal women (Fig. 5). The mutated ER also showed increased binding to the co-activator TIF-2, which may partially explain its increased functional responsiveness to estrogen. Whatever the mechanisms, the hypersensitivity to estrogen associated with this mutation may play a very important role in the early development and progression of premalignant breast disease.

Oncogenes and tumor suppressor genes in premalignant breast disease

In addition to proliferation and ER, a large number of other biological characteristics have been evaluated in human premalignant breast disease, but the majority of studies have been small and have not been validated (see reviews: Berardo et al. 1996b, Allred et al. 1997, Libby et al. 1999, Allred & Mohsin 2000). Exceptions include the erbB2 oncogene and p53 tumor suppressor gene, which have both been evaluated in a large number of studies.

erbB2 is amplified and/or overexpressed in 20–30% of IBCs (Ravdin & Chamness 1995). These abnormalities are associated with increased proliferation, poor clinical outcome, and altered responsiveness to various types of adjuvant therapies (De Potter 1994, Ravdin & Chamness 1995, DiGiovanna 1999). erbB2 may also promote cell motility (De Potter & Quatacker 1993, De Potter 1994), which could contribute to the ability of tumor cells overexpressing erbB2 to invade and metastasize. Nearly all studies of erbB2 in premalignant breast disease have used immunohistochemistry to detect overexpression of the oncoprotein, which is highly correlated with gene amplification (Venter et al. 1987). Overexpression has not been observed in TDLUs (De Potter et al. 1989, Allred et al.

Figure 5 Somatic point mutation (Lys for Arg at position 303) of the estrogen receptor (ER) gene identified in a high proportion of hyperplastic breast lesions that results in functional ‘hypersensitivity’ to estrogen. The mutated ER has normal binding affinity for estrogen but, when transfected into breast cancer cell lines, results in markedly increased transcriptional activity and proliferation in response to estrogen. In the growth curves shown, note the much higher rates of growth at very low estrogen (E2) concentrations in the cells transfected with mutated compared with wild type (WT) ER. These phenomena, especially the increased proliferation, could be very important in the early development of premalignant breast lesions and their progression to cancer.

p53 also appears to play an important role in the evolution of premalignant breast disease. This tumor suppressor gene is mutated in about 30% of IBCs, which is associated with generally aggressive biological features and poor clinical outcome (Elledge & Allred 1994, Chang et al. 1995). Most are missense point mutations resulting in an inactivated but stabilized protein that accumulates to very high levels in the cell nucleus (Davidoff et al. 1991a). Hence, measuring protein levels is a relatively easy and accurate surrogate assay for detecting mutations and most studies of premalignant disease have used immunohistochemistry to assess p53 status. With the exception of morphologically ‘normal’ breast epithelium in Li-Fraumeni patients with inherited mutations (Barnes et al. 1992b), abnormalities of p53 have not been reported in TDLUs (Bartek et al. 1990, Davidoff et al. 1991b, Eriksson et al. 1994, Rajan et al. 1997). p53 also appears to be normal in nearly all ADH (Bartek et al. 1990, Umekita et al. 1994, Chitemere et al. 1996). Similar to erbB2, many studies have assessed p53 in DCIS (Walker et al. 1991, Poller et al. 1993a, Tsuda et al. 1993, Bobrow et al. 1994, Eriksson et al. 1994, O’Malley et al. 1994, Zafrani et al. 1994, Leal et al. 1995, Schmitt 1995, Albonico et al. 1996, Berardo et al. 1996a, Bose et al. 1996, Chitemere et al. 1996, Siziopikou et al. 1996, Rajan et al. 1997) and found alterations to correlate directly with histological differentiation, being quite rare (about 5%) in low-grade non-comedo lesions, and relatively common (about 40%) in high-grade comedo lesions. Abnormalities of p53 have been detected in only about 5% of LCIS (Domagala et al. 1993, Younes et al. 1995), which is probably similar to ALH. Mutations of p53 may contribute to the development and progression of premalignant breast disease by several mechanisms, including interference with DNA repair through loss of an important G1 cell-cycle checkpoint, leading to replication of a damaged DNA template and genetic instability, and also perhaps by clonal expansion through inhibition of programmed cell death (Levine 1997).

Most of the biological abnormalities responsible for the development and progression of premalignant breast lesions are still unknown. Recent genetic studies demonstrate that their biological evolution is very complex. Many recent studies have assessed allelic imbalance (AI) by loss of heterozygosity (LOH) analysis or comparative genomic hybridization (CGH) (Table 4). These methods can identify the general chromosomal locations of non-functional tumor suppressor genes (through losses) or amplified oncogenes (through gains) that may be important in the development of premalignant disease.

Studies of AI in premalignant lesions from non-cancerous breasts (i.e. without synchronous IBC) are an ideal setting to identify genetic alterations that may be important in the early development of these lesions. Those assessing atypical hyperplasias (ADH and ALH) have shown that up to 50% contain one or more AIs among more than 30 genetic loci distributed over 10 chromosomes that have been evaluated so far (Lakhani et al. 1995b, Rosenberg et al. 1996, 1997, Chauqui et al. 1997, Nayar et al. 1997, O’Connell et al. 1998). Not surprisingly, AIs were more common in non-invasive carcinomas (DCIS and LCIS) than in hyperplasias. Nearly all DCIS showed at least one AI among more than 100 genetic loci on 17 chromosomes studied so far, consistent with the notion that they represent a relatively late stage of evolution (Radford et al. 1993, 1995a, 1995b, O’Connell et al. 1994, 1998, Aldaz et al. 1995, Munn et al. 1995, Stratton et al. 1995, Fujii et al. 1996a, b, Man et al. 1996, Chappell et al. 1997, Waldman et al. 2000). LCIS has also shown multiple gains and losses involving at least 8 chromosomes (Lakhani et al. 1995a, Nayar et al. 1997, Lu et al. 1998). In contrast to atypical hyperplasias, which usually show only one or two imbalances individually, in situ carcinomas typically demonstrate many, especially comedo DCIS which in one study had as many as eight in a single lesion (O’Connell et al. 1998). The highest rates of AI in DCIS approach 80% and involve loci on chromosomes 16q, 17p, and 17q, suggesting that altered genes in these regions may be particularly important in the development of DCIS. The genetic diversity of DCIS and LCIS assessed by LOH and CGH rivals the complexity observed in IBC.

Several studies have evaluated AI in premalignant lesions from non-cancerous breasts compared with...
histologically similar lesions from cancerous breasts as a strategy to identify alterations which might be important in the progression to invasive disease (Allred & Mohsin 2000). Following this strategy, one recent study of a marker on chromosome 11p (D11S988) showed rates of LOH increasing from 10% to 20% in UDH, 10% to 40% in ADH, and 20% to 70% in DCIS (O’Connell et al. 1996). The gene for cyclin D1 resides near this locus, suggesting that alteration of its function may be important in tumor progression, although many other genes in this region are probably also involved. In the same study, comedo DCIS showed significant increases in LOH at several other loci including D2S362 on 2q (10% to 40%), D13S137 on 13q (10% to 40%), and D17S597 on 17q (5% to 40%), suggesting that high-grade DCIS is particularly unstable genetically and that several alterations may be important in tumor progression.

Studies of AI in premalignant breast lesions from cancerous breasts also provide an opportunity to assess shared alterations with synchronous IBC as an indication of their evolutionary relatedness. In one recent study (O’Connell et al. 1998) assessing LOH at 15 loci on 12 chromosomes, 50% of ADH shared their LOH phenotypes with synchronous IBC, providing novel and compelling genetic evidence that ADH is a direct precursor of IBC. Many studies of DCIS and a few of LCIS have shown that nearly all lesions share several identical AIs with synchronous IBC, providing convincing if not surprising evidence that they too are evolutionarily related (Radford et al. 1995b, Stratton et al. 1995, Zhuang et al. 1995, Fujii et al. 1996a, Ahmadian et al. 1997, Dillon et al. 1997, O’Connell et al. 1998). Synchronous DCIS and IBC may occasionally show distinct AIs, suggesting that there may also be divergent aspects to their evolution (Fujii et al. 1996a).

An interesting study by Deng and colleagues (Deng et al. 1996) noted that histologically normal TDLUs shared LOH for markers on 3p, 11p, and 17p with closely adjacent IBC, while TDLUs farther away in the same breast did not, suggesting that even normal appearing epithelium may have genotypic abnormalities associated with an elevated risk for developing breast cancer.

Studies of LOH, CGH, and many other methodologies over the past decade provide crude but compelling evidence that IBC evolves from premalignant lesions by highly diverse genetic and epigenetic mechanisms. Hopefully, future studies will provide more detailed information about specific mechanisms which can be manipulated to prevent the development and progression of premalignant disease. Progress in the past has been hampered by a reliance on correlative studies of small archival tissue samples from patients that are difficult to obtain – due in part to a lack of appropriate cell lines and animals to support mechanistic studies. Fortunately, cell lines and animal models are beginning to emerge to support the mechanistic studies necessary for more fundamental progress (Allred & Medina 2000), such as the MCF10AT cell line that can mimic certain aspects of ADH and DCIS (Dawson et al. 1996, Shekhar et al. 1998).

Prognostic factors in premalignant breast disease

Premalignant lesions are very common and they are being diagnosed more frequently due to increasing public awareness and screening mammography. They are currently defined by their histological features and their prognosis is imprecisely estimated based on indirect epidemiological evidence (Page & Dupont 1993). While lesions within specific categories look alike histologically, there must be underlying biological differences causing a subset to progress to IBC. Studies identifying biological prognostic factors in premalignant disease are beginning to emerge.

For example, preliminary results from two recent studies suggest that increased levels of ER in normal breast epithelium (Khan et al. 1998) and certain premalignant lesions (UL, ADH, and DCIS) (Mohsin et al. 2000b) may be associated with a two- to threefold increased risk of developing IBC, and assessing ER status may eventually be important in clinical management. Its most promising role may be in identifying patients with high-risk premalignant lesions who might benefit from hormonal therapy. In the recent National Surgical Adjuvant Breast Project (NSABP) P-1 chemoprevention clinical trial (Fisher et al. 1998),

Table 4 General chromosomal locations of allelic imbalances (gains and losses) in premalignant breast lesions from studies assessing loss of heterozygosity and comparative genomic hybridization

<table>
<thead>
<tr>
<th>Category</th>
<th>Losses</th>
<th>Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>1q, 2p, 6q, 9p, 11q, 13q, 14q, 16q, 17p, 17q, Xq</td>
<td>Unknown</td>
</tr>
<tr>
<td>ALH</td>
<td>11q, 16p, 16q, 17p, 22q</td>
<td>6q</td>
</tr>
<tr>
<td>DCIS</td>
<td>1p, 1q, 2p, 2q, 3q, 4p, 6q, 7q, 8p, 8q, 11p, 11q, 12p, 13q, 14q, 15q, 16p, 16q, 17q, 17p, 18q, 21q</td>
<td>1q, 3q, 6q, 6q, 8q, 17q, 20q, Xq</td>
</tr>
<tr>
<td>LCIS</td>
<td>11q, 13q, 16p, 16q, 17p, 17q, 22q</td>
<td>6q</td>
</tr>
</tbody>
</table>
patients with a history of ADH receiving tamoxifen experienced a dramatic decrease (85%) in breast cancer incidence. Nearly all ADH express very high levels of ER, suggesting that highly ER-positive premalignant lesions may be particularly susceptible to hormonal therapy. The success of this trial is proof-of-principle that targeting biological alterations in premalignant disease is a rational strategy for the chemoprevention of breast cancer.

erbB2 and p53 may also become useful prognostic factors in managing patients with premalignant breast disease, based on recent studies suggesting that patients with benign breast lesions showing low levels of amplification of the erbB2 gene (Stark et al. 2000), or slightly elevated levels of p53 protein (Rohan et al. 1998), have a two- to threefold increased relative risk of developing IBC.

The transforming growth factor-beta (TGF-β) pathway may also be important. TGF-βs are important growth suppressing factors in normal breast epithelium and their activity is mediated by specific receptors, including TGF-βRII in particular. Most normal breast epithelia express high levels of TGF-βRII and an interesting recent study showed that reduced levels of this receptor in UDH added an additional threefold risk of developing IBC in patients with this type of lesion (Gobbi et al. 1999). Given that UDH may not be a major precursor of IBC, it will be important to validate this study in other lesions with more direct premalignant potential, such as ADH.

Far less is known about prognostic factors in pre-malignant disease than in IBC, although knowledge in this area is increasing rapidly. No single factor so far appears to be particularly powerful in predicting the development of IBC, and panels of multiple factors will probably be more useful. This should not be surprising, given the high degree of biological complexity in these lesions. High priority should be given to identifying additional prognostic factors because success in identifying and treating high-risk premalignant disease has the potential to prevent the majority of lethal invasive breast cancers.

Acknowledgements
This work was supported by NIH grants PO1 CA 30195, P50 CA 58183, and RO1 CA 72038.

References
Bobrow LG, Happerfield LC, Gregory WM, Springall RD & Millis RR 1994 The classification of ductal carcinoma in situ and its

Meyer JS 1977 Cell proliferation in normal human breast duct fibroadenomas and other ductal hyperplasias measured by nuclear labeling with tritiated thymidine. Human Pathology 8 67–81.

