An adenoviral vector expressing functional heterogeneous proteins herpes simplex viral thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against medullary thyroid carcinoma

R Zhang and L J DeGroot
Thyroid Study Unit/MC 3090, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
(Requests for offprints should be addressed to L J DeGroot, Thyroid Study Unit, Mail code 3090, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA)

Abstract
To explore a more efficient multi-gene antitumor treatment, we developed an adenoviral vector expressing both herpes simplex virus thymidine kinase (HSVtk) and human interleukin-2 (hIL-2) (AdCMVTKhIL2). Production of hIL-2 is expected to augment antitumor T cell and natural killer cell activity. Two separate cassettes expressing HSVtk and hIL-2, each under the control of the human cytomegalovirus (CMV) immediate early gene promoter, were inserted into the early 1 region of adenovirus type 5. This vector showed similar direct cytotoxicity towards infected rat medullary thyroid carcinoma (rMTC) cells as did the single gene vector, AdCMVtk. rMTC cells infected with the virus in vitro showed high sensitivity to ganciclovir.

After infection with AdCMVTKhIL2 at 100 m.o.i. for 1 h, more than 20,000 U hIL-2 were produced during 24 h by \(1\times10^6\) rMTC cells on day 2 and day 3. hIL-2 was also detected in the supernatants of primary cultures from tumors treated in vivo by the AdCMVTKhIL2 vector.

Infected cells lost their tumorigenicity when transplanted subcutaneously into syngeneic rats, whereas all control animals developed tumors.

More than 63% of tumors (19 out of 30 treated tumors) were destroyed when AdCMVTKhIL2 was injected intratumorally, compared with 38% when tumors were treated with AdCMVIL2, and 12% when treated with AdCMVtk, indicating an antitumor effect superior to that of each single vector given alone at the same dosage.

These results indicate that the AdCMVTKhIL2 vector efficiently produces both HSVtk and hIL-2, and provides an enhanced antitumor activity.

Introduction
One strategy in cancer therapy is to introduce into tumor cells suicide genes that can kill the cells after administration of the appropriate prodrug. Herpes simplex virus thymidine kinase (HSVtk) is one of the best studied, and most widely used, suicide genes. HSVtk, a non-mammalian enzyme, can phosphorylate ganciclovir (GCV) into GCV-monophosphate (GCV-MP), whereas normal mammalian cellular thymidine kinase (TK) does not. GCV-MP is then further phosphorylated by cellular TK to toxic GCV-triphosphate (GCV-TP). GCV-TP is a potent inhibitor of viral DNA polymerase, and selectively inhibits mammalian δ-polymerase (Smee et al. 1985, St Clair et al. 1987, Ilsley et al. 1995). The suicide-gene-containing cells are killed by the gene/prodrug system. In addition, cells neighboring the suicide-gene-containing cells are also killed because of the bystander effect (Freeman et al. 1993, Yang et al. 1998).

Exciting results were obtained using the HSVtk/GCV system in animal studies (Hwang et al. 1995, Kianmanesh et al. 1996).
al. 1997, Nishihara et al. 1997), and clinical trials are under way (Marcel & Grausz 1997). However, some studies have revealed an inability of this system to inhibit tumor growth (Golumbek et al. 1992, Sturtz et al. 1997, Sterman et al. 1998, Touraine et al. 1998, Zhang & DeGroot 2000a). One reason for this may be the insensitivity of tumor cells to GCV-TP (Golumbek et al. 1992, Sturtz et al. 1997). A second reason is that certain cells lack the bystander effect (Touraine et al. 1998, Zhang & DeGroot 2000a), so that only the directly transduced cells are killed. Touraine et al. (1998) analyzed 17 tumor cell lines and found a complete lack of bystander effect in five, and that most had only a moderate bystander effect (Touraine et al. 1998). Lack of this effect in tumor cells makes this approach impossible for those tumors. A third reason for a poor response is the low transduction efficiency, especially in solid tumors. Currently, no techniques are available to introduce the pertinent gene to all cells in a tumor. Usually, fewer than 10% (typically, fewer than 1%) are transduced, using the most efficient viral vectors. These limitations indicate that not all tumors are appropriate for suicide-gene therapy, and limit the application of such cancer therapy in humans at this time.

IL-2, originally called T cell growth factor, is produced by CD4+ T cells and to a lesser extent by CD8+ T cells (Abbas et al. 1994). It stimulates proliferation of cytotoxic T cells (Moller 1980, Kasaian & Biron 1989), and helper T cells (Mosmann & Coffman 1987), causes activation of natural killer cells, and enhances their cytolytic function as lymphokine-activated killer cells (Grimm et al. 1982, Trinchieri 1989). IL-2 also stimulates synthesis of other T-cell-derived cytokines and lymphotoxin (Abbas et al. 1994). Although systemic administration of IL-2 gave moderate benefits in the treatment of certain tumors in animal models and human trials (Rosenberg 1988), therapeutically effective concentrations of IL-2 are always accompanied by undesirable side effects (Siegel & Puri 1991, Lentsch et al. 1999). Transfection of IL-2 cDNA into tumor cells greatly reduced toxic effects, because sufficient amounts of IL-2 are released at the tumor site but without leading to high systemic concentrations (Fearon et al. 1990, Gansbacher et al. 1990, Sarna et al. 1990). In these studies, IL-2-secreting tumor cells lost their tumorigenicity, and induced an efficient immune response after implantation into syngeneic animals, causing them to reject a subsequent challenge with parental tumor cells (Fearon et al. 1990, Gansbacher et al. 1990, Ohe et al. 1993, Colombo & Rodolfo 1995, Musiani et al. 1996). While efficacious in producing IL-2 secreting cells, this method did not demonstrate efficiency against established tumors, and routine clinical application has been limited by the inability to culture and transfect many types of common tumors.

Development and application of viral vectors including adenovirus have made cancer gene therapy feasible. Adenoviruses infect a wide range of host cells, can be produced at very high titters, can express transgenes without integration into the DNA of infected cells, and are therefore suitable for direct in vivo gene transfer. Numerous reports show the effectiveness of adenoviral vectors in transducing antitumor genes for cancer gene therapy (Haddada et al. 1993, Cordier et al. 1995, Bramson et al. 1996, Huang et al. 1996, Gilligan et al. 1998).

Various researchers have used two or more vectors to treat tumors (Chen et al. 1996, O’Malley et al. 1996, 1997, Coll et al. 1997, Uckert et al. 1998), including the combination of a suicide gene and a cytokine gene (Coll et al. 1997, O’Malley et al. 1997). Some of these studies showed a benefit from the combined therapy, but with some limitations. For example, to keep the total amount of the virus in the treatment to a practical level, a much smaller amount of each viral vector must be used, and this limits the effectiveness of the therapy. More recently, vectors expressing two heterogeneous proteins have been constructed and initial animal studies indicated a beneficial effect of this approach (Putzer et al. 1997, Emtege et al. 1999, Palu et al. 1999). In this study, we describe the construction of a new adenoviral vector expressing both HSVtk and hIL-2 genes, analyze the functional expression of these two genes in rat medullary thyroid carcinoma (rMTC) cells, and evaluate in vivo antitumor activity in an rMTC animal model.

Materials and methods

Plasmid construction and adenovirus rescue

Plasmids pCA13, pCA14 and pΔE1sp1B, which contain the left end of the adenovirus type 5 (Ad5) genome (0–16.1 mu), were obtained from Microbox Biosystem Inc. (Ontario, Canada). pJM17, which contains the entire Ad5 sequence
with an insertion of a pBR322 segment at bp 1339 (3.7 mu) in its early 1 (E1) region, was kindly provided by Dr S Refetoff (University of Chicago, IL, USA). This insertion makes the resulting viral genome too large to be packed in 293 cells, except through recombination with a shuttle plasmid. pZipNeoSVhIL2 was a gift of Dr Edward Cohen (University of Illinois at Chicago, IL, USA), and pBS-TK was a gift of Dr S L W Woo (Baylor College of Medicine, Houston, TX, USA).

Plasmids were constructed by a standard procedure (Sambrook et al. 1989), and transformed into Escherichia coli JM109 bacteria by the CaCl2 method. Plasmid DNA was prepared and purified using a commercial plasmid purification kit from Qiagen Incorporation (Qiagen Inc., Valencia, CA, USA). Recombinant adenoviruses were rescued and propagated using 293 cells as previously described (McGrory et al. 1988).

Two expression shuttle plasmids, pCA14tk and pΔE1sp1BTKhIL2, were constructed as follows. The BamHI/HindIII-digested fragment from pBS-TK containing the entire open reading frame of the HSVtk gene, was subcloned into BamHI/HindIII-digested pCA14, resulting in pCA14tk. Plasmid pCA14tk carries the adenoviral segment from −299 to +72 flanked by the human cytomegalovirus (CMV) IE promoter, and the simian virus (SV) 40 poly(A). The expression cassette was released from pCA14tk by BglII digestion, and ligated into the HindIII site of pΔE1sp1B after blunt-ending, yielding plasmid pΔE1sp1BTk. Digestion by BamHI allowed determination of direction of the inserted HSVtk cassette. Similarly, pCA13hIL2, containing the hIL-2 expression cassette, was produced by subcloning the BamHI-digested fragment of pZipSV40hl2, which contains the entire hIL-2 reading frame, into the BamHI site of pCA13. hIL-2 was also flanked by the human CMV IE promoter and SV40 poly(A) sequences. The direction of hIL-2 cDNA insertion was determined by co-digestion with enzymes AflII and HindIII. The hIL-2 expression cassette was then released from pCA13hIL2 by BglII digestion and ligated into the BglII site of pΔE1sp1BTk, yielding pΔE1sp1BTkhIL2. Digestion with enzyme XhoI determined direction of insertion of the cDNA.

The viral vectors were generated by cotransfection of 293 cells with pCA14TK and pJM17 to produce AdCMVtk, or with pΔE1sp1BTKhIL2 and pJM17 to produce AdCMVTkhIL2. Figure 1 shows the diagram of these two adenoviral vectors.

Construction of the replication-defective adenoviral vectors containing Lac Z or IL-2 genes, under the transcriptional control of the human CMV IE promoter/ enhancer system (AdCMVLacZ, AdCMCIL2), has been described previously (Zhang et al. 1998b). Construction of AdCMVLuc has also been described previously (Zhang et al. 2001). Viral stocks were prepared by infection of 293 cells. The viruses were harvested after infection and purified by double cesium chloride gradient ultracentrifugations (Graham & van der Eb 1973). Viral titers (plaque forming units/p.f.u./ml) were determined by plaque assay using 293 cells. Viral stocks were stored in 10% glycerol at −80 °C.

Animals and cell cultures

All cell culture media and supplements were obtained from GIBCO (Life Technologies, Inc., Grand Island, NY, USA). Plasticwares were purchased from Fisher Scientific (Pittsburgh, PA, USA).

Wag/Rij rats were bred and maintained in the Carlson Biocentainment Suite under standard conditions, according to the Guidelines of the Animal Research Center. Four-week-old rats were used in our studies.

The rMTC cell line was purchased from American Type Culture Collection (Rockville, MD, USA), and maintained in DMEM supplemented with 10% horse serum, 100 µg/ml penicillin and 100 µg/ml streptomycin. 293 cells, a transformed human cell line that has the E1 region of the Ad5 integrated in its genome (Graham & van der Eb 1973, Graham et al. 1977), were purchased from Microbox Biosystems Inc., and maintained in complete MEM (containing 10% fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin). CTLL-2 cells were kindly provided by Dr Edward Cohen (University of Illinois at Chicago, IL, USA) and maintained in complete RPMI 1640 medium supplemented with 50 mmol/l 2-mecaptoethanol and 20 U/ml recombinant hIL-2.

Direct cytotoxicity of AdCMVTkhIL2 on infected cells

rMTC cells were infected by AdCMVTkhIL2 or AdCMVtk using different ratios of viral p.f.u. to cells (multiplicity of

A. AdCMVtk: [CMV TK PA]

B. AdCMVTkhIL2: [CMV TK PA CMV hIL2 PA]

Figure 1 Structure of (A) AdCMVtk and (B) AdCMVTkhIL2. The expression cassette for HSVtk or HSVtkhIL2 replaces E1 of the Ad5 genome. Both inserted genes are under control of the human CMV IE promoter and are terminated by the polyadenylation signal (PA) of simian virus 40. The Ad vector was obtained by homologous recombination via co-transfection of pJM17 and the appropriate shuttle plasmid in 293 cells.
infection, m.o.i.) for 1 h in 500 µl infection solution (DMEM supplemented with 2% fetal bovine serum), and then incubated for 3 days in 96-well plates. On the last day of incubation, 20 µl [³H]thymidine solution (0.5 µCi) were added into each well. Cells were harvested and incorporation of [³H]thymidine into transduced cells was determined by scintillation counter.

Analysis of functional hIL-2 expression

hIL-2 bioactivity was measured by a standard bioassay protocol using an IL-2-dependent murine T cell line, CTLL-2, as described previously (Davis et al. 1994). The transduced rMTC cells were cultured and supernatant was recovered for hIL-2 assay every 24 h. Different numbers of rMTC cells were used in the cultures, depending on the period of incubation (from 2×10⁵ cells/well to 1×10⁶ cell/well in 6-well plate). CTLL-2 cells (5×10⁴) were incubated with an hIL-2-containing sample in a volume of 180 µl for 24 h at 37 °C in 96-well microtiter plates. [³H]Thymidine (0.5 µCi/well in 20 µl) was added, and the incorporation of [³H]thymidine into DNA was determined after overnight incubation (Davis et al. 1994).

GCV sensitivity assay

AdCMVTKhIL2- or AdCMVtk-infected or wild-type rMTC cells were incubated in 96-well plates using 5×10³ cells in 180 µl complete medium for 24 h. A series of concentrations of GCV was added into the culture in sextuple (20 µl solution) and incubation was continued for another 24 h. [³H]Thymidine (0.5 µCi in 20 µl) was then added to each well and samples were incubated for another 24 h. Cells were harvested after detaching them from the plates by three freeze-thaw cycles. Incorporation of [³H]thymidine was determined in a scintillation counter.

Tumorigenicity of AdCMVTKhIL2-transduced rMTC cells

rMTC cells were infected with 50 m.o.i. AdCMVTKhIL2 for 1 h in 500 µl infection solution. Infected cells were then washed with serum-free medium. A total of 1×10⁶ infected cells in 100 µl serum-free medium were injected subcutaneously into one flank of WAG/Rij rats. Animals transplanted subcutaneously with rMTC cells infected by AdCMVVLacZ or AdCMVtk virus served as the controls. Injected animals were inspected every 2 days for development of tumors.

Development of rMTC tumors in WAG/Rij rat

rMTC cells were harvested in the exponential growth phase and washed three times in serum-free medium, then 1×10⁶ cells were injected subcutaneously into the right flank of each rat. Tumors usually developed in 2 weeks.

In vivo antitumor efficiency study

Adenoviral vectors were directly injected into the tumors using 2×10⁹ p.f.u. in 100 µl solution. Forty-eight hours after the viral treatment, GCV was administered i.p. at 100 µg/kg body weight for 7 consecutive days. Tumor size was measured every 2 days. The subcutaneous tumor volumes were determined from the formula v=a²b/2, where a is the shortest diameter, and b is the longest diameter of the tumor.

Challenge of rats cured of tumor by reinjection of tumor cells

Rats that were tumor-free after treatment with AdCMVTKhIL2 were challenged with wild type rMTC cells injected in the opposite flank. The same cell number was used as in the first injection.

Statistical calculations

Student’s t- and χ²-tests were used to analyze the data. P>0.05 was considered significant.

Results

Direct cytotoxicity of AdCMVTKhIL2 on infected rMTC cells

The direct cytotoxicity of AdCMVTKhIL2 on infected rMTC cells was evaluated by in vitro cell proliferation assay as described in Materials and methods. The toxicities of AdCMVTKhIL2 and AdCMVtk for infected rMTC cells were similar (Fig. 2). A clear inhibitory effect was observed when the cells were infected at more than 100 m.o.i. of either virus.

AdCMVTKhIL2-directed expression of functional hIL-2 in infected rMTC cells

The expression of hIL-2 in infected rMTC cells was determined using an hIL-2-dependent CTLL-2 cell proliferation assay (Fig. 3). The infected cells produced large amounts of hIL-2 in the first few days (Fig. 4), and production then decreased, probably because of loss of virus, as cells replicate and some die. On day 2 and 3, more than 60 000 IU hIL-2 were produced by 1×10⁶ cells each 24 h as calculated using this assay.
Figure 2 Cytotoxicity of vectors towards rMTC cells infected by AdCMVTKhIL2 or AdCMVtk at different m.o.i. for 1 h, and then incubated for 3 days in 96-well plates. On the last day of incubation, [3H]thymidine solution was added to each well. Cytotoxicity was evaluated by measuring the incorporation of [3H]thymidine by infected cells.

Figure 3 AdCMVTKhIL2-directed expression of functional hIL-2 in transduced rMTC cells (1×10⁶) infected in vitro at 100 m.o.i. for 1 h in 500 µl solution. After three washes with serum-free medium, the infected cells were incubated in 6-well plates. Supernatants were harvested after 24 h incubation. The activity of hIL-2 in the supernatants was tested by CTLL-2 cell proliferation assay. Recombinant (r)IL-2 served as positive control: ‘1×’ rIL-2 equals 80 U/ml. The medium served as negative control.
Figure 4 Dynamic expression of hIL-2 in rMTC cells infected with AdCMVTKhIL2 at 100 m.o.i. for 1 h, and then incubated in 6-well plates at 2x10⁵ cells/4 ml complete medium. Supernatants were saved and replaced every 24 h for 6 consecutive days. The activity of hIL-2 was detected in supernatants by CTLL-2 cell proliferation assay.

Figure 5 GCV sensitivity of AdCMVTKhIL2-infected rMTC cells incubated and treated with GCV at different concentrations as described in Materials and methods. Proliferation fraction (PF) equals 100 multiplied by the value of the c.p.m. in cells treated with GCV divided by the c.p.m. in cells not treated with GCV. The GCV sensitivity of transduced rMTC cells was calculated according to the extent of proliferation inhibition in different conditions. The key in the figure indicates the various m.o.i. used in the infection.
Endocrine-Related Cancer (2001) 8 315–325

Figure 6 In vivo expression of functional hIL-2 in rMTC tumors injected intratumorally with AdCMVTKhIL2 or AdCMVLacZ at 2×10^9 p.f.u., or with medium control, in 100 µl. Two days after injection, tumors were excised and primary cultures were set up at 1×10^6 cells/ml complete medium. Supernatants were harvested for CTLL-2 cell proliferation assay after overnight incubation. rhIL-2 served as positive control, '1×' rIL-2 equals 80 U/ml. The medium served as negative control.

Analysis of expression of HSVtk by GCV sensitivity assay using AdCMVTKhIL2 infected cells

To determine the expression of HSVtk gene in infected cells, rMTC cells were transduced with AdCMVTKhIL2 at various m.o.i. When rMTC cells were infected at 2 m.o.i., cell proliferation was inhibited by more than 34% at a GCV concentration of 1 mmol/l, compared with 5% inhibition in uninfected GCV control cells. When cells were infected at 20 m.o.i., cell proliferation was inhibited more than 76%. At a GCV concentration of 100 mmol/l, using 2 m.o.i., cell proliferation was inhibited by about 60%, compared with 30% inhibition in uninfected control cells, and inhibition was 92% at 20 m.o.i. These results demonstrate the expression of HSVtk and high sensitivity of infected rMTC cells to the HSVtk/GCV system in vitro (Fig. 5).

Expression of hIL-2 after intratumoral administration of AdCMVTKhIL2

In order to verify the expression of hIL-2 in infected tumor cells in vivo, tumors were treated by injection of 2×10^6 p.f.u. of either AdCMVTKhIL2 or AdCMVLacZ virus in 100 µl serum-free medium. The treated tumors were then excised 2 days after the injection. A single cell suspension was prepared, primary cultures were made at 2×10^6 cells /µl, and cells were cultured overnight in complete RPMI-1640 media. Supernatants were then saved and equal aliquots of the supernatants were used to examine the presence of hIL-2 using the IL-2-dependent CTLL-2 cell proliferation assay. No proliferation of the CTLL-2 cells was observed using supernatants from uninfected tumors or tumors treated with AdCMVLacZ, whereas supernatants from AdCMVTKhIL2-treated tumors induced a very good proliferation (Fig. 6), indicating the production of functional hIL-2 by the AdCMVTKhIL2 treated tumor cells.

Tumorigenicity of rMTC cells infected in vitro with AdCMVTKhIL2 in Wag/Rij rats

To evaluate the effect of hIL-2 secretion by AdCMVTKhIL2-infected cells on tumorigenicity, parental rMTC cells, or rMTC cells transduced with AdCMVLacZ, AdCMVtk or AdCMVTKhIL2 were injected subcutaneously into the flanks of groups of Wag/Rij rats. Parental rMTC cells induced tumor development in 100% of injected rats. All rats injected with AdCMVLacZ-infected rMTC cells or with AdCMVtk-infected cells and treated with phosphate-buffered saline (PBS), developed tumors. No rats injected with AdCMVtk-infected cells and treated with GCV, or with AdCMVTKhIL2-infected cells, developed tumors (Table 1). In animals injected with AdCMVtk-infected cells and treated with GCV, the expression of HSVtk presumably phosphorylated GCV, destroying the tumor cells. In the AdCMVTKhIL2-infected and PBS-treated group, the secretion of hIL-2 in the tumor cells is presumed to activate host antitumor immune responses, and thus induce inhibition of the tumor development (Moller 1980, Grimm et al. 1982, Mosmann & Coffman 1987, Kasaian & Biron 1989, Trinchieri 1989).
Table 1 Tumorigenicity of infected rMTC cells.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Treatment</th>
<th>Tumor-free rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>GCV</td>
<td>0/5</td>
</tr>
<tr>
<td>AdCMVLacZ</td>
<td>GCV</td>
<td>0/5</td>
</tr>
<tr>
<td>AdCMVtk</td>
<td>PBS</td>
<td>0/5</td>
</tr>
<tr>
<td>AdCMVtk</td>
<td>GCV</td>
<td>5/5</td>
</tr>
<tr>
<td>AdCMVTKhIL2</td>
<td>PBS</td>
<td>5/5</td>
</tr>
<tr>
<td>AdCMVTKhIL2</td>
<td>GCV</td>
<td>5/5</td>
</tr>
</tbody>
</table>

rMTC cells were infected in vitro with different adenoviral vectors as indicated in the Table at 10 m.o.i. for 1 h in 500 µl infection solution, then infected cells were injected subcutaneously into one flank of WAG/Rij rats after washing. Two days after the injection, animals were treated with either GCV at 100 mg/kg per day or PBS for 5 consecutive days. Animals were inspected every 2 days for 2 months for the development of tumors.

Superior in vivo antitumor activity with the bivalent vector

To evaluate the antitumor effect of AdCMVTKhIL2 in an rMTC animal model, the different adenoviral vectors were used at the same dosage to treat tumors. Tumors of different sizes were used in different experiments. Tumor growth was significantly inhibited after treatment with AdCMVTKhIL2 compared with the effect of a control vector. Table 2 summarizes the treatment efficiency with different vectors. AdCMVTKhIL2 destroyed 63% of tumors after treatment, whereas, at the same dosage, AdCMVIL2 destroyed 38% and AdCMVtk destroyed 11.8% of tumors, reflecting the benefit of the combination of HSVtk and IL-2 expression (Table 2).

Development of long-term antitumor immunity after treatment with AdCMVTKhIL2

To determine whether animals developed antitumoral immunity after AdCMVTKhIL2 treatment, rMTC cells were reinfected subcutaneously into the opposite flanks of animals cured of tumors. Only four of 19 rats developed tumors after the injection of parental rMTC cells (78.9% tumor free, Table 3, indicating that most animals were highly immunized against the tumor cells, whereas all five control animals developed tumors after injection of rMTC cells. These results demonstrate that a systemic and long-term antitumor immunity was established in most rats after direct intratumor delivery of AdCMVTKhIL2 virus.

Table 3 Long-term antitumor immunity in cured rats.

<table>
<thead>
<tr>
<th>No. of tumor-free rats after challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Wag/Rij</td>
</tr>
<tr>
<td>Cured Wag/Rij</td>
</tr>
</tbody>
</table>

Animals cured from their tumor after treatment with AdCMVTKhIL2 were reinfected with 1×10^6 wild-type rMTC cells per rat, 2 months after AdCMVTKhIL2 treatment. Control animals were Naive Wag/Rij rats.*** P<0.001 compared with naive controls.

Discussion

Our previous studies showed that adenovirus expressing murine IL-2 can be used to modify rMTC cells in vitro, and abrogated tumorigenicity in vivo (Zhang et al. 1998a). Direct treatment in vivo induced more than 40% of tumors to regress, and the remaining tumors had a low growth rate (Zhang et al. 1998a, 1999). The benefit of combination gene therapy with mixtures of different adenoviral vectors expressing HSVtk/GCV or cytokine genes has been reported. The combination of HSVtk/GCV with either IL-2 or IL-12 has been reported to have a better therapeutic efficacy than either one alone (Chen et al. 1996, O’Malley et al. 1996, 1997, Uckert et al. 1998).

HSVtk/GCV treatment can kill infected tumor cells, and the killed cells may then release specific tumor antigens. Cytokines secreted from transduced cells producing IL-2 or IL-12 will activate and enhance the function of both non-specific and specific immune cells. The activated immune cells will be more efficiently primed by taking up the released tumor antigens. These factors will synergize and more efficiently destroy the tumor mass. On the basis of this hypothesis, we constructed an adenoviral vector expressing HSVtk and hIL-2 (AdCMVTKhIL2), in which two
separately expressing cassettes are inserted into the Ad5 E1 region. This differs from other reported vectors, in which two cDNA pieces were inserted in the same region, using an encephalomyocarditis virus internal ribosome entry site sequence to initiate expression of the second cDNA. We compared the expression of HSVtk, and IL-2, using AdCMVTKhIL2, with expression from AdCMVtk and AdCMVIL2, and did not find a significant difference. Another benefit is that we can insert multiple expression cassettes in suitable regions of Ad5 within the range of the insertion capacity. A combination of three or more different antitumor genes may be powerful enough to destroy the treated tumors.

Our in vivo study confirmed that the co-expression of HSVtk and IL-2 in one vector is superior to the effect of either one alone, or the mixture of two separate vectors. When we applied this new vector to treat rMTC tumors, 63% of tumors were destroyed. Only 38% of treated tumors were destroyed when AdCMVIL2 vector was used alone, and 11.8% of tumors were destroyed when AdCMVtk was used alone at the same dosage and in similar size tumors (Table 2).

We did not observe benefit from injecting a mixture of the two adenoviral vectors AdCMVIL2 and AdCMVtk (data not shown). Because of the low transduction efficiency, two viruses may not always infect the same cell in the treated tumor, and this may reduce the benefit of the combination.

We believe that a combined gene strategy is the best way to obtain high therapeutic efficiency. New vectors expressing both IL-12 subunits and the HSVtk gene, and other combinations, are therefore now under consideration.

Acknowledgements

We are grateful to Dr Bernard Roizman for the use of his laboratory, the Marjorie B Kovler Viral Oncology Laboratories at The University of Chicago for producing and preparing adenoviral vectors, Dr Cyprian Gardine for his careful reading of the manuscript and important suggestions, Miss Myrna Zimberg for her excellent secretarial assistance, and to all our fellow colleagues in our laboratory for their advice and useful discussion during this project.

This project was supported by the David Wiener Fund, the Elsa U Pardee Foundation, and a Center of Excellence Award from Knoll Pharmaceutical Corporation.

References

Colombo MP & Rodolfo M 1995 Tumor cells engineered to produce cytokines or cofactors as cellular vaccines: do animal studies really support clinical trials? Cancer Immunology, Immunotherapy 41 265–270.

Isles DD, Lee SH, Miller WH & Kuchta RD 1995 Acyclic guanosine analogs inhibit DNA polymerases α, δ, and ε with very different potencies and have unique mechanisms of action. *Biochemistry* 34 2500–2510.

Kasaian MT & Biron CA 1989 The activation of IL2 transcription in L3T4+ and Lyt2+ lymphocytes during virus infection in vivo. *Journal of Immunology* 142 1287–1292.

La Motte RN, Rubin MA, Barr E, Leiden JM, Blaetue JA & Mokyr MB 1996 Therapeutic effectiveness of the immunity elicited by P815 tumor cells engineered to express the B7-2 costimulatory molecule. *Cancer Immunology and Immunotherapy* 42 161–169.

Maeda H & Shiraishi A 1996 TGF-β contributes to the shift toward Th2-type response through direct and IL-10–mediated pathways in tumor-bearing mice. *Journal of Immunology* 156 73–78.

St Clair MH, Lambe CU & Furman PA 1987 Inhibition by ganciclovir of cell growth and DNA synthesis of cells

