Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer

K W Colston and C Mørk Hansen

Department of Oncology, Gastroenterology, Endocrinology and Metabolism, St George's Hospital Medical School, London SW17 0RE, UK

(Requests for offprints should be addressed to K Colston; Email: k.colston@sghms.ac.uk)

Abstract

It is now well established that, in addition to its central role in the maintenance of extracellular calcium levels and bone mineralization, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, also acts as a modulator of cell growth and differentiation in a number of cell types, including breast cancer cells. The anti-proliferative effects of 1,25(OH)2D3 have been linked to suppression of growth stimulatory signals and potentiation of growth inhibitory signals, which lead to changes in cell cycle regulators such as p21WAF-1/CIP1 and p27kip1, cyclins and retinoblastoma protein as well as induction of apoptosis. Such studies have led to interest in the potential use of 1,25(OH)2D3 in the treatment or prevention of certain cancers. Since this approach is limited by the tendency of 1,25(OH)2D3 to cause hypercalcaemia, synthetic vitamin D analogues have been developed which display separation of the growth regulating effects from calcium mobilizing actions. This review examines mechanisms by which 1,25(OH)2D3 and its active analogues exert both anti-proliferative and pro-apoptotic effects and describes some of the synthetic analogues that have been shown to be of particular interest in relation to breast cancer.

Endocrine-Related Cancer (2002) 9 45–59

Introduction

1α,25-Dihydroxyvitamin D3 is the biologically active form of vitamin D3. Vitamin D3 was identified in the 1920s as a new lipid soluble substance with anti-rachitic properties. It is now clear that vitamin D3 is normally synthesized in adequate amounts in the skin by the action of ultra violet light on the precursor molecule 7-dehydrocholesterol. Vitamin D3 is activated in the body by two metabolic steps. The first is in the liver where hydroxylation in the C-25 position produces 25-hydroxyvitamin D3, the major circulating metabolite. The second metabolic step takes place in the kidney where 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) is synthesised. This reaction is catalysed by a mitochondrial P450 enzyme, 1α-hydroxylase. The initial step in the catabolism of 1,25(OH)2D3 is via 24-hydroxylation leading to formation of the biologically active calcitriol acid. It is now known that 1,25(OH)2D3, acting via its receptor, transcriptionally regulates the expression of the 24-hydroxylase (CYP24) gene thus promoting this catabolic pathway (Norman et al. 1982, Zierold et al. 1994).

Adequate synthesis of vitamin D3 and intake of dietary calcium are essential for skeletal health. 1,25(OH)2D3 mediates its calcitrophic actions primarily by stimulating intestinal absorption of calcium and phosphate to provide mineral for bone. The hormone has also been demonstrated to have effects on bone cells and promotes differentiation of both osteoblasts and osteoclasts (Tanaka & Seino 1997). It is generally accepted that the main actions of 1,25(OH)2D3 are receptor mediated and involve modulation of the transcription of target genes. The cloning of the vitamin D receptor (VDR) was reported in 1987 and subsequent studies have indicated that this receptor protein is a member of the nuclear receptor super-family, which share a common functional domain structure (Carlberg 1995). VDRs form dimer complexes with other nuclear receptors, preferentially retinoid X receptors (RXR), and bind to specific DNA sequences (vitamin D response elements, VDREs) which are located in the promotore region of primary responding genes. In addition to this pathway, the presence of another non-genomic pathway has been demonstrated in a number of tissues leading to rapid biological responses mediated by a putative membrane receptor (Nemere et al. 1998).
VDR expression in mammary tissue and breast tumours

VDRs are present in normal breast and many other epithelial tissues (Berger et al. 1988). Studies in experimental animals have demonstrated that the VDR is dynamically regulated during pregnancy and lactation, but little is known about its specific functions. The VDR is expressed at low levels in mammary gland in virgin rats and is upregulated in response to the differentiation inducing hormones cortisol, prolactin and insulin (Mezzetti et al. 1987). Highest levels of VDR in mammary gland are seen during lactation, being maximal at 3 days post partum when the concentration of calcium in milk is highest (Colston et al. 1988). Addition of 1,25(OH)2D3 to mammary gland explants increased VDR expression and enhanced calcium uptake (Mezzetti et al. 1988). Circulating concentrations of 1,25(OH)2D3 are increased during pregnancy and lactation and recent studies have demonstrated the presence of 1α-hydroxylase in normal breast tissue (Friedrich et al. 2000). These studies suggest that 1,25(OH)2D3 may play a role in differentiation and milk production by the mammary gland.

Further studies have indicated that vitamin D can protect against transformation of mammary cells. Animal studies have demonstrated that dietary vitamin D can abrogate the tumorigenic effects of a high fat diet on mammary tissue (Jacobson et al. 1989) and treatment with a vitamin D analogue can prevent the development of carcinogen-induced mammary tumours (Anzano et al. 1994). Furthermore, treatment with 1,25(OH)2D3 prevented the development of preneoplastic lesions in mammary gland explants following treatment with the carcinogen 7,12-dimethylbenz(a)-anthracene (DMBA; Mehta et al. 1997). Finally, in the female VDR-knockout mouse, abnormalities in mammary gland terminal end bud development have been identified which could lead to an increased susceptibility to chemical carcinogens (Narvaez et al. 2001). Taken together, these findings suggest that 1,25(OH)2D3 and its analogues may suppress tumorigenesis of normal breast epithelial cells and that disruption of VDR regulated pathways may predispose to transformation.

Several studies have demonstrated that a high proportion of breast cancer biopsy specimens contains vitamin D receptors (Freake et al. 1984, Eisman et al. 1986, Berger et al. 1987). Furthermore, there appears to be an association between VDR levels and prognosis, as tumour receptor status may be positively related to disease-free survival (Colston et al. 1989, Berger et al. 1991). In addition, epidemiological studies have suggested an association between vitamin D deficiency and breast cancer risk (Janowsky et al. 1999) and disease activity (Mawer et al. 1997). More recently, a link between polymorphisms in the gene encoding the VDR and breast cancer risk has also been reported (Curran et al. 1999, Lundin et al. 1999, Ingles et al. 2000, Bretherton Watt et al. 2001).

1,25(OH)2D3 and its synthetic analogues inhibit growth of breast cancer cells

The anti-proliferative effect of 1,25(OH)2D3 on cultured human cancer cells was first demonstrated in 1981 (Colston et al. 1981). These first experiments demonstrated that 1,25(OH)2D3 at nanomolar concentrations inhibited the growth of human amelanotic melanoma cells in culture. At the same time it was shown that 1,25(OH)2D3 could promote the differentiation of mouse cultured myeloid leukaemia cells (Abe et al. 1981). Over the past two decades many reports have confirmed that 1,25(OH)2D3 can affect growth and differentiation of a wide variety of cancer cell types in vitro, including breast cancer cells (Feldman et al. 1997). Such findings have prompted considerable interest in the development of synthetic analogues with reduced calcemic activity and which may have therapeutic potential in malignancy. A wide variety of analogues have been developed (Fig. 1), many of which display modification in the C-17 side chain of the molecule (Binderup et al. 1997, Mørk Hansen et al. 2001a). The most promising of these compounds display an improved activity profile, with enhanced cell regulatory effects relative to the native hormone but with weaker effects on calcium metabolism. Thus, these new analogues provide both a new class of agents with potential in the treatment and prevention of certain cancers as well as additional experimental tools with which to elucidate the mechanisms underlying the anti-cancer effects of 1,25(OH)2D3. Many of the studies published to date have utilized established breast cancer cell lines as well as animal models of breast cancer to gain a clearer understanding of the signalling pathways involved.

Mechanisms associated with inhibitory effects of vitamin D compounds in breast cancer cells

Effects on cell cycle regulation compounds

A number of investigations have indicated that 1,25(OH)2D3 and its analogues may induce inhibition of breast cancer cell growth by regulating cell cycle progression. Treatment of oestrogen receptor-positive MCF-7 breast cancer cells with 1,25(OH)2D3 induces cell cycle arrest in G0/G1 (Simboli-Campbell et al. 1997, Wu et al. 1997). These effects are accompanied by alterations in the expression of important cell cycle regulators such as increases in cyclin-dependent kinase (cdk) inhibitors and dephosphorylation of the retinoblastoma protein (Fan & Yu 1995, Mørk Hansen et al. 2001b). Increases in p21WAF1/CIP1
expression at the mRNA and protein level have been documented in association with G1 arrest mediated by 1,25(OH)2D3 or certain of its synthetic analogues (James et al. 1996, Mørk Hansen et al. 2001b). A study in MCF-7 breast cancer cells treated with the vitamin D analogue EB1089 demonstrated a correlation between increased p21WAF-1/CIP1 protein levels, inhibition of Cdk2-associated histone H1 kinase activity and G1 arrest (Wu et al. 1997). Effects of 1,25(OH)2D3 on p27kip1 appear to vary with cell type. Some studies have reported unchanged levels of p27kip1 in human MCF-7 cells treated with 1,25(OH)2D3 or its analogue EB1089 (Wu et al. 1997, Jensen et al. 2001, Mørk Hansen et al. 2001b) but another reported an increase in this cyclin-dependent kinase inhibitor (Verlinden et al. 1998). Increased p27kip1 expression was also identified in response to treatment with the analogue EB1089 in BT20 and ZR-75-1 breast cancer cells (Wu et al. 1997). The effect of EB1089 on the regulation of growth of MCF-7 cells has been further studied at the level of expression of the c-myc and c-fos proto-oncogenes. Treatment of cells with this vitamin D analogue decreased the level of c-myc mRNA and transiently increased c-fos expression, being approximately 50 times more potent than 1,25(OH)2D3 (Mathiasen et al. 1993). The observation that 1,25(OH)2D3 is able to regulate c-myc at the mRNA level is in accordance with the finding of a putative VDRE which has been reported in the human c-myc gene (Okano et al. 1999).

Many studies addressing the effects of vitamin D compounds on breast cancer cells have been undertaken in MCF-7 cells, which are oestrogen receptor (ER)-positive. However, 1,25(OH)2D3 and its analogues also exert inhibitory effects on certain oestrogen-independent cell lines (Abe et al. 1991, Colston et al. 1998, Xie et al. 1999). Sensitivity to 1,25(OH)2D3 is generally reported as being higher in breast cancer cells which express the oestrogen receptor than in those that do not (Narvaez et al. 2001). Effects of vitamin D compounds on oestrogen response pathways have been assessed by a number of laboratories. The analogue EB1089 has been shown to down-regulate the expression of ER in MCF-7 cells and to limit responsiveness to both the mitogenic effects of 17ß-oestradiol and the induction by this steroid of the progesterone receptor protein and pS2 mRNA (James et al. 1994, Colston et al. 1995) (Fig. 2). 1,25(OH)2D3 has been shown similarly to down-regulate ER levels and

Figure 1 Structures of synthetic analogues of vitamin D with anti-tumour activity.
Figure 2 Vitamin D derivatives down-regulate oestrogen and progesterone receptor abundance and pS2 transcript levels in MCF-7 human breast cancer cells. (a) Regulation of oestrogen receptor (ER) expression by the vitamin D analogue EB1089 in MCF-7 cells. Cells were grown in phenol-red-free DMEM medium supplemented with 5% charcoal-stripped fetal calf serum and treated for 1–4 days with 10^{-8} M EB1089 or ethanol vehicle as control. Cell cytosols were prepared and ER content was quantitated by the Abbott ER-enzyme immunoassay (EIA) method (Abbott Laboratories, Chicago, IL, USA). Results are expressed as mean ER concentration (fmol/mg cytosol protein) ± S.E.M. *P<0.05, significantly different from control. (b) Effects of EB1089 and 1,25(OH)$_2$D$_3$ on progesterone receptor protein (PR) expression. MCF-7 cells were treated for 4 days with ethanol vehicle or the vitamin D derivatives (both at 10^{-8} M). Cell cytosols were prepared and PR content was quantitated by the Abbott PR-EIA method. Results are expressed as mean PR concentration (fmol/mg cytosol protein) ± S.E.M. **P<0.01, significantly different from control. (c) Effects of EB1089 and 1,25(OH)$_2$D$_3$ on pS2 transcript levels. MCF-7 cells were cultured in phenol-red-free DMEM with 5% charcoal-stripped serum in the presence of 10^{-8} EB1089, 10^{-8} M 1,25(OH)$_2$D$_3$ or ethanol vehicle (C) for 1–4 days prior to extraction of total RNA and northern blot analysis. (Adapted from Colston et al. 1995.)
suppress oestrogen action in the MCF-7 cell line (Swami et al. 2000). Another study has indicated that 1,25(OH)₂D₃ inhibits oestrogen-induced transcription of the p32 gene in the absence of a change in ER abundance (Demirpence et al. 1994). Thus, it has been suggested that vitamin D compounds may act at several points on the oestrogen response pathway, including having effects on both the abundance of ER protein and the ability of this receptor to act as a transcriptional activator. Recent sequence analysis of the ERα gene has demonstrated a potential VDRE within the promoter, which may point to a direct regulatory effect of 1,25(OH)₂D₃ on ER gene transcription (Stoica et al. 1999).

Interactions of the vitamin D analogue EB1089 and the pure anti-oestrogen ICI 182,780 (Wakeling et al. 1991) on the oestradiol-stimulated growth of MCF-7 cells have been investigated. Treatment of cell cultures with EB1089 in combination with ICI 182,780 and in the presence of 17β-oestradiol produced an augmented inhibition of proliferation compared with the actions of either compound alone (James et al. 1994). Cooperative effects of combined treatment with vitamin D analogues and tamoxifen have also been demonstrated both in MCF-7 and ZR-75-1 cells (Abe-Hashimoto et al. 1993, Vink-van Wijngaarden et al. 1994). However, breast cancer cells selected for anti-oestrogen resistance and those negative for ER retain sensitivity to 1,25(OH)₂D₃-mediated cell cycle arrest (Love-Schimenti et al. 1996, Welsh et al. 1998, Flanagan et al. 1999).

Induction of apoptosis by vitamin D derivatives

Cell growth requires both proliferation signals and survival signals. Tumour cells gain a growth advantage by abnormal proliferation and a defect in the regulation of cell death. The failure of cancer cells to undergo ‘programmed’ cell death (apoptosis) is a major determining factor in the development of many types of tumour. In addition to inhibitory effects on cell growth, 1,25(OH)₂D₃ and certain of its analogues have been shown to induce morphological and biochemical features of apoptosis in breast cancer cells (Welsh 1994, James et al. 1995, 1996, Narvaez & Welsh 1997, Mørk Hansen et al. 2001b). MCF-7 cells treated with 1,25(OH)₂D₃ exhibit cytoplasmic condensation and hyperchromatic, pycnotic nuclei resulting from chromatin condensation typical of apoptotic cells. Morphological assessment of MCF-7 cells treated with 1,25(OH)₂D₃ and tamoxifen in combination showed enhanced induction of apoptosis (Welsh 1995). While the molecular mechanisms by which vitamin D derivatives may induce apoptosis in breast cancer cells are not fully understood, there is growing evidence for an involvement of the bcl-2 family of proteins. A decrease in the relative expression of anti-apoptotic (bcl-2/ bcl-XL) to pro-apoptotic family members (bax, bak) has been reported in a number of systems in response to vitamin D compounds (James et al. 1996, Danielsson et al. 1997, Simboli-Campbell et al. 1997, James et al. 1998). It has been reported that treatment of MCF-7 cells with 1,25(OH)₂D₃ leads to a redistribution of bax from the cytosol to the mitochondria (Narvaez & Welsh 2001) and forced expression of bcl-2 renders MCF-7 cells resistant to 1,25(OH)₂D₃ and its analogues (Mathiasen et al. 1999). These studies suggest that sensitivity to vitamin D-mediated apoptosis may be determined by the relative expression or subcellular distribution of pro- and anti-apoptotic members of the bcl-2 family. Cytochrome c release with a concomitant decrease in mitochondrial membrane potential has recently been shown to take place in response to vitamin D-mediated apoptosis, but the relationship between this observation and changes in the bcl-2 family of proteins is poorly understood (Narvaez & Welsh 2001). While cytochrome c release from mitochondria to cytosol is associated with caspase activation in a number of systems, recent in vitro studies have indicated that, in MCF-7 cells, vitamin D-mediated apoptosis is not dependent on the activation of any known caspase (Mathiasen et al. 1999, Narvaez & Welsh 2001, Pirianov & Colston 2001a). In addition, induction of apoptosis by vitamin D derivatives appears to be independent of the mutational status of the p53 tumour suppressor gene. 1,25(OH)₂D₃ and its analogues are capable of inducing apoptosis in T47-D breast cancer cells (Mathiasen et al. 1999) which possess a mutated p53 gene (Bartek et al. 1990). Upregulation of apoptotic related proteins such as clusterin, cathepsin B and transforming growth factor β (TGFβ) has been reported in MCF-7 cells undergoing apoptosis in response to 1,25(OH)₂D₃ and its analogues (Colston et al. 1995, James et al. 1996, Simboli-Campbell et al. 1996, 1997). In addition, 1,25(OH)₂D₃ treatment has been shown to enhance sensitivity of breast cancer cells to a number of anti-cancer drugs and a number of other agents, indicating that vitamin D compounds may be useful in combination with conventional chemotherapy (Table 1). Thus, vitamin D compounds have been demonstrated to potentiate apoptosis induced by Adriamycin and taxol as well as by radiation (Ravid et al. 1999, Sundaram et al. 2000, Wang et al. 2000). These findings suggest that cross talk between distinct apoptosis pathways might exist. This point has been addressed by identification of potential cross talk between the tumour necrosis factor α (TNFα) and vitamin D systems. TNFα induces apoptosis in MCF-7 breast cancer cells by a well-defined pathway that is triggered by activation of TNF-R1, a cell surface ‘death receptor’ whose signalling is linked to activation of caspases. Pretreatment of MCF-7 cells with 1,25(OH)₂D₃ or active vitamin D analogues potentiates the effects of TNFα on induction of apoptosis (Rocker et al. 1994, Pirianov et al. 1999, Mathiasen et al. 2001). Pirianov and associates provided evidence that this potentiation could be attributable to enhanced accumulation of ceramide and cytosolic phospholipase A2 (cPLA2) activation but was independent of changes in TNF-R1 or TNFα.
Table 1 Summary of studies showing enhancement by vitamin D compounds of effects of anticancer agents in breast cancer cells.

<table>
<thead>
<tr>
<th>Anticancer agent</th>
<th>Vitamin D analogue</th>
<th>Cell line</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioestrogen</td>
<td>Tamoxifen</td>
<td>EB1089, KH1060 MCF-7, ZR-75-1</td>
<td>Vink-van Wijngaarden et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>MCF-7, ZR-75-1</td>
<td>Abe-Hashimoto et al. (1993)</td>
</tr>
<tr>
<td></td>
<td>IC182,780</td>
<td>EB1089 MCF-7</td>
<td>Demirpence et al. (1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,25-D MCF-7</td>
<td>James et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>Retinoids</td>
<td>EB1089 MCF-7</td>
<td>Nolan et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>IC164,384</td>
<td>1,25-D, EB1089 BT-474, MCF-7, MDA-MB-453</td>
<td>Love-Schimenti et al. (1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOX MCF-7, ZR-75-1</td>
<td>Abe-Hashimoto et al. (1993)</td>
</tr>
<tr>
<td></td>
<td>Doxorubicin</td>
<td>1,25-D MCF-7</td>
<td>Ravid et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T47-D</td>
<td>Koga & Sutherland (1991)</td>
</tr>
<tr>
<td></td>
<td>ILX-23-7553</td>
<td>T47-D MCF-7, MDA-MB-231, MDA-MB-453</td>
<td>Chaudry et al. (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T47-D</td>
<td>Posner et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>1,25-D MCF-7, MDA-MB-231, T47-D</td>
<td>Wang et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Carbo/cisplatin</td>
<td>1,25-D MCF-7</td>
<td>Cho et al. (1991)</td>
</tr>
<tr>
<td>Cytokines</td>
<td>IL-6</td>
<td>1,25-D MCF-7</td>
<td>Koren et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>TNFα</td>
<td>CB1093 MCF-7</td>
<td>Pirianov et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CB1093 MCF-7, Hs578t, T47-D</td>
<td>Pirianov & Colston (2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,25-D MCF-7</td>
<td>Rocker et al. (1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,25-D MCF-7, T47-D</td>
<td>Mathiasen et al. (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CB1093</td>
<td>Pirianov et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Ceramide</td>
<td>CB1093 MCF-7, Hs578t, T47-D</td>
<td>Pirianov & Colston (2001a)</td>
</tr>
<tr>
<td></td>
<td>Radiation</td>
<td>EB1089 MCF-7</td>
<td>Sundaram & Gewirtz (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILX-23-7553 MCF-7</td>
<td>Chaudry et al. (2001)</td>
</tr>
</tbody>
</table>

OCT, maxacalcitol; 1,25-D, 1,25(OH)_2D_3; IL-6, interleukin 6.

Modulation of growth factor signalling

An additional mechanism by which vitamin D derivatives may influence breast cancer cell growth and viability is through modulation of growth factor signalling. It is well documented that breast cancer cells both elaborate and respond to a variety of paracrine/autocrine growth factors. The vitamin D analogue EB1089 can reverse the growth stimulatory effects of epidermal growth factor (EGF; Saez et al. 1994) and regulation of EGF receptor levels by 1,25(OH)_2D_3 has been demonstrated (Koga et al. 1988, Desprez et al. 1991). In addition, it has recently been reported that the gene encoding amphiregulin, a heparin-binding EGF-related growth factor, is transcriptionally regulated by 1,25(OH)_2D_3 (Akutsu et al. 2001). In most epithelial cells, including breast cancer cells, TGFβ is a negative growth regulator and thus increased TGFβ activity is expected to decrease breast cancer cell growth. It is thus of interest that 1,25(OH)_2D_3 has been shown to enhance the expression of TGFβ1 and its latent form binding protein in cultured breast cancer cells (Koli & Keski-Oja et al. 1994). Further, in vitro studies using both human BT20 or MCF-7 breast cancer cells have demonstrated a dose-dependent increase in TGFβ1 mRNA and TGFβ protein secreted into the medium in...
response to treatment of cells with 1,25(OH)₂D₃ or EB1089, with the analogue being more potent (Mercier et al. 1996). These effects were abrogated by addition of neutralizing antibodies to TGFβ, suggesting that the anti-proliferative effect of vitamin D compounds could, in part, be mediated by increased expression of this growth inhibitory peptide (Mercier et al. 1996, Verlinden et al. 1998, Yang et al. 2001).

Insulin-like growth factor I (IGF-I) is a potent mitogen and survival factor for many cell types, including normal breast epithelium and breast cancer cells (Pollak 1998). IGF-I is known to contribute to the loss of growth regulation by inhibiting cell death in tumour cells. Furthermore, high plasma IGF-I levels are associated with increased risk of breast cancer in premenopausal women (Hankinson et al. 1998) and the IGF-I receptor is overexpressed in many breast cancer cell lines (Papa et al. 1993). The influence of IGF-I on cell survival in vivo is determined both by the extracellular concentration of the growth factor and the levels of several IGF binding proteins (IGFBPs) which modulate the availability of the free cytokine for interaction with its membrane receptor (IGF-IR). Evidence suggests that the wild-type IGF-IR and/or its ligands have a widespread anti-apoptotic effect against many signals including serum and growth factor deprivation (Dews et al. 1997). In addition, IGF-I has been shown to be an effective inhibitor of apoptosis induced by diverse chemotherapeutic agents and tamoxifen (Dunn et al. 1997).

Interestingly, studies with a number of breast cancer cell lines have indicated that vitamin D compounds are able to block the mitogenic effects of IGF-I. This effect is accompanied by a decrease in proliferation and an increase in apoptosis (Vink-van Wijngaarden 1996, Xie et al. 1997, 1999, Pirianov & Colston 2001b). It remains to be determined whether the attenuation by vitamin D compounds of IGF-I effects in breast cancer cells are mediated by decreased expression of the IGF-IR, an accumulation of inhibitory IGFBPs or modulation of downstream effectors of IGF-I signalling. Studies with MCF-7 cells maintained under serum-free conditions and treated with 1,25(OH)₂D₃ or EB1089 showed no direct effect on IGF-I binding (Vink-van Wijngaarden et al. 1996). In contrast, our own studies demonstrated a decrease in IGF-IR expression in response to vitamin D treatment by the techniques of both ligand binding assay and immunoblotting (Xie et al. 1997) (Fig. 3, left panel). However, we have observed that decreased expression of IGF-IR in response to vitamin D analogues is a late event and is not detected at 4 days of treatment, at which time we have observed inhibition of IGF-I effects in cultures co-treated with vitamin D analogues (Xie et al. 1999). The contribution of changes in expression of IGFBPs to the inhibitory effects of vitamin D compounds on IGF-I actions is still unclear. Rozen and colleagues have suggested a role for IGFBP-5 in the modulation of IGF-I signalling by the analogue EB1089 in MCF-7 cells, as they observed enhanced expression of IGFBP-5 mRNA as well as increased accumulation of IGFBP-5 in culture (Rozen et al. 1997, Rozen & Pollak 1999). This group also reported that the vitamin D compounds were unable to inhibit the mitogenic activity of long R3 IGF-I, an IGF-I analogue with greatly reduced affinity for IGFBPs but similar affinity for IGF-I receptors (Nickerson et al. 1997). Our own findings have indicated that vitamin D compounds increased expression of IGFBP-3 in MCF-7 cells and also in Hs578t breast cancer cells, which are not growth stimulated by IGF-I (Colston et al. 1998). We addressed the ability of vitamin D analogues to abrogate the anti-apoptotic effects of IGF-I by co-incubation of MCF-7 cells maintained in serum-free medium with IGF-I. We observed that the analogue CB1093 prevented the anti-apoptotic effects of IGF-I as assessed by cell viability and DNA fragmentation assays (Pirianov & Colston 2001b). In contrast to the report from Rozen and Pollak (1999), we found that the stimulatory effect of long R3 IGF-I was also attenuated by co-treatment with vitamin D analogues (Fig. 3, right panel). This suggests that the ability of these compounds to prevent the anti-apoptotic effects of IGF-I is not predominantly mediated via increased expression of inhibitory IGF binding proteins. Further studies are needed to determine if vitamin D compounds can directly modulate downstream effectors of IGF-I signalling.

Invasion and metastasis
Metastatic spread constitutes the major clinical problem of breast cancer patients. Invasion and metastasis involve complex processes by which tumour cells detach, degrade extracellular matrix and disseminate to form secondary deposits at distant sites. The highly metastatic ER-negative human breast cancer cell line, MDA-MB-231, has previously been used to evaluate these aspects of cancer cell biology. These cells have been shown to be poorly responsive to the growth inhibitory actions of 1,25(OH)₂D₃ and its analogues when grown in monolayer culture (Koike et al. 1997, Koli & Keski-Oja 2000). However, using a well established assay of tumour cell invasion, Mørk Hansen and colleagues (1994) demonstrated that 1,25(OH)₂D₃ and two of its analogues were capable of inhibiting this aspect of cell activity. Furthermore, reduced invasiveness of these cells in response to vitamin D has been shown to be associated with diminished activity of the metalloproteinase MMP-9 and the two serine proteases urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). These effects were associated with an increase in PA inhibitor 1 and the MMP inhibitor 1 (Koli & Keski-Oja 2000).

In addition, the anti-angiogenic activity of 1,25(OH)₂D₃ may contribute to its anti-invasive and anti-metastatic actions. In the chick embryo chorioallantoic membrane assay,
Figure 3 Anti-IGF-I effects of vitamin D analogues. (Left panel) Dose-dependent inhibition of IGF-IR expression by the vitamin D analogue EB1089 in MCF-7 cells. Cells were treated for 6 days with ethanol vehicle (lane 1) or EB1089 (10⁻⁹ and 10⁻⁸ M, lanes 2 and 3). Lysates were prepared from these cultures and fractionated by SDS-PAGE. Immunoblotting was performed using a rabbit polyclonal antibody against the α subunit of IGF-IR. (Right panel) Effects of recombinant human (rh) IGF-I and long R3 IGF-I (L-IGF-I) on MCF-7 cell growth in serum-free medium. MCF-7 cells (2 × 10⁴/well) were seeded into 24-well plates in growth medium and allowed to adhere overnight. Cell layers were extensively washed and cultures incubated in RPMI 1640 medium supplemented with 1% FCS or in serum-free medium. Cells were treated for 4 days with increasing concentrations of rhIGF-I or long R3 IGF-I in the presence or absence of 10⁻⁷ M CB1093. Cell viability was assessed by neutral red assay (Rocker et al. 1996). Results are expressed as a percentage of untreated control cultures maintained in medium supplemented with 1% FCS.

1,25(OH)₂D₃ concentrations in the picomolar range have been shown to inhibit angiogenesis (Oikawa et al. 1990). These studies are now supported by several in vivo studies (Majewski et al. 1993, 1996, Iseki et al. 1999).

Development of synthetic analogues: preclinical and clinical trials

The potentially toxic effect of conventional vitamin D metabolites with regard to calcium handling prompted the development of synthetic vitamin D analogues. Thus, while beneficial effects of 1,25(OH)₂D₃ on cancer cells have been supported by results obtained with 1α-hydroxy D₃, which is converted to 1,25(OH)₂D₃ in vivo, the therapeutic window is extremely narrow (reviewed in Mørk Hansen et al. 2000). A number of pharmaceutical companies have addressed this problem by investigating whether structural modification of the parent hormone can produce compounds which display separation of the growth regulating effects from calcium mobilizing actions. Several hundred new vitamin D analogues have been designed and tested and many display modification of the parent molecule at the C-17 side chain structure whilst keeping the 1α-hydroxylated A ring and cis triene the same as in the 1,25(OH)₂D₃ molecule (Jones & Calverly 1993). Initially, compounds with modifications at carbons 22, 23 and 24 were designed, as binding to the vitamin D receptor is not substantially altered by this change, while metabolic degradation as well as binding to the vitamin D serum transport protein, vitamin D binding protein (DBP), are both reduced. Thus introduction of double or triple bonds, fluorogroups and/or aromatic rings into the side chain have produced compounds with improved activity profile. In addition, epimerization at C-20 in the side chain or introduction of a double bond at position C-16 in the D ring are approaches that have been shown to improve differentiation of the two classes of activity (Bouillon et al. 1995, Binderup et al. 1997, Yamada et al. 2000). Initially, the effectiveness of these various analogues has been evaluated using in vitro methods. The human leukaemic cell lines HL-60 and U937 have been extensively utilized to assess the effects of conventional vitamin D metabolites and synthetic analogues on cell growth and differentiation (DeLuca & Ostrem 1988). A large number of these compounds have also been assessed for their effects on breast cancer cell growth and apoptosis.
Calciptriol (MC903)

The compound MC903 (calcipotriol; Leo Pharmaceutical Products, Ballerup, Denmark) contains a cyclopropyl substitution in the side chain (Binderup & Bramm 1988). This analogue appears to be equipotent with 1,25(OH)₂D₃ in inhibiting the growth of MCF-7 breast cancer cells in vitro (Colston et al. 1992a), but displays calcaemic activity 100-200 times less than the natural hormone. This profile of activity was subsequently found to be largely due to rapid inactivation of the analogue in vivo and subsequently this compound has been developed and marketed for topical treatment of psoriasis (Binderup & Kragballe 1992, Fogh & Kragballe 2000). With regard to breast cancer, the efficacy of topical treatment of cutaneous nodules with calcipotriol has been investigated (Bower et al. 1991). In this study, 19 women with locally advanced or cutaneous metastatic disease were treated topically with calcipotriol ointment. Of 14 patients who completed treatment, 3 showed partial response and 1 a minimal response.

Maxacalcitol (OCT)

22-Oxa-1α,25(OH)₂D₃ (Chugai Pharmaceutical Co. Ltd, Tokyo, Japan), in which an oxygen atom is substituted for the methyl group at C-22, displays reduced calcacemic activity in vivo and has been extensively studied with regard to its effects on cancer cell growth in vitro and in animal models (Kubodera et al. 1997). Abe and associates (1991) have documented potent anti-proliferative and marketted effects of OCT in estrogen-positive and -negative cell lines. In animal models, OCT has been shown to retard the growth of breast tumour xenografts developed in athymic mice from estrogen-positive MCF-7 cells and the estrogen-negative tumour MX-1 (Abe et al. 1991). Using the xenograft model, these workers also observed a synergistic anti-tumour effect of submaximal doses of OCT and tamoxifen (Abe-Hashimoto et al. 1993). Furthermore, OCT has also been demonstrated to exert a growth inhibitory effect in DMBA-induced rat mammary tumours, alone and in combination with the aromatase inhibitor CGS 16949A (Andoh & Iino 1996).

Seocalcitol (EB1089)

Seocalcitol (EB1089), a second generation analogue from Leo Pharmaceutical Products, contains a conjugated double bond system and is approximately 50 times more potent than 1,25(OH)₂D₃ in vitro, while the actions of EB1089 on calcium metabolism in vitro are markedly reduced (Colston et al. 1992b, Mathiasen et al. 1993). Studies in our laboratory have demonstrated that oral administration of this compound to rats bearing nitrosoimethyl urea (NNU)-induced mammary tumours leads to a dose-dependent inhibition of tumour progression. No significant increase in serum calcium concentration was seen at the lower doses tested (Colston et al. 1992b, Mackay et al. 1996). These findings have also been supported by subsequent studies with both DMBA-induced mammary tumours and MCF-7 xenograft models (Saez et al. 1994, VanWeelden et al. 1998). In both the NNU-induced tumour model and MCF-7 cell xenografts, treatment of animals with EB1089 led to tumour regression and evidence in tumour tissue of DNA fragmentation indicative of apoptotic cell death (James et al. 1998, VanWeelden et al. 1998). Furthermore, the beneficial effects of EB1089 on tumour progression in the MCF-7 xenograft model can be enhanced by combination of the analogue with paclitaxel (Koshizuka et al. 1999a) or retinoic acid (Koshizuka et al. 1999b).

Breast cancer metastasizes frequently to bone, and a well established animal model that has been utilized to test potential therapeutic agents is the development of bone metastases following intracardiac inoculation of athymic mice with MDA-MB-231 cells. Using this model, it has recently been shown that administration of EB1089 results in a marked increase in survival and an inhibition of development of bone metastases without development of hypercalcaemia (El Abdami et al. 2000).

The safety of EB1089 has been evaluated by a dose finding study in 13 healthy volunteers who received the analogue orally for 4 consecutive days. This study indicated that doses in the range of 5 to 20 µg/day could be considered for future use in clinical trials. A phase I trial of oral EB1089 in patients with advanced breast and colorectal cancer has been completed. This trial was an open, non-controlled single-centre study with sequentially assigned dose levels (Gullford et al. 1998). Twenty-five females had breast cancer and four females and seven males had colorectal carcinoma. Patients received the analogue twice daily for 5 days with a 3-week post-dosing follow-up. Twenty patients received compassionate treatment after this post-dosing interval for between 10 and 234 days (mean 90±62 days). On the basis of this study, the estimated maximum tolerated dose (MTD) was determined to be 7 µg/m² per day for prolonged use. Ten patients developed hypercalcaemia, which resolved within 7 days of stopping treatment and no other serious adverse reactions were observed. Although no clear anti-tumour effects were seen in this study, 6 patients (2 colorectal, 4 breast cancer) showed disease stabilization for at least 3 months.

Additional clinical trials are currently under way to evaluate the efficacy of oral administration of EB1089 in various malignant conditions. A phase I/II trial involving patients with non-resectable pancreatic carcinoma has been undertaken as well as evaluation of the efficacy and safety of EB1089 in patients with advanced hepatocellular carcinoma. These studies indicate that EB1089 is well tolerated within a dose range of 5 to 25 µg/day, with dose limiting hypercalcaemia as the only consistently reported adverse
effect. This was found to be reversible with cessation of treatment. Furthermore, preliminary data suggest that a small number of patients with hepatocellular carcinoma have shown reduction in tumour size (Evans et al. 2000).

16-ene analogues

The 16-ene vitamin D analogues are characterized by the introduction of a double bond at the C-16 position in the D ring of the molecule (Uskokovic et al. 1997). Ro-23-7553 (ILX-23-7553, Hoffmann-LaRoche Ltd, Nutley, NJ, USA) is 1α,25-dihydroxy-16-ene-23-yne-cholecalciferol and this compound shows increased potency compared with 1,25(OH)2D3 in regulating cell growth and has been tested in animal models of prostatic carcinoma with encouraging results (Schwartz et al. 1995). This analogue is currently in phase I trials in patients with advanced metastatic cancer. A related analogue, 1α,25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro-24-5531) has been evaluated for its efficacy in preventing the development of NMU-induced rat mammary tumours (Anzano et al. 1994).

Table 2 *In vivo* effects of vitamin D analogues in animal models of breast cancer: summary of studies.

<table>
<thead>
<tr>
<th>Vitamin D analogue</th>
<th>Animal model of mammary cancer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1αOD3</td>
<td>rat/NMU-induced</td>
<td>Colston et al. (1992a)</td>
</tr>
<tr>
<td>1αOD3</td>
<td>rat/DMBA-induced</td>
<td>Iino et al. (1994)</td>
</tr>
<tr>
<td>OCT</td>
<td>mouse/MCF-7 + MX-1 xenograft</td>
<td>Abe-Hashimoto et al. (1993)</td>
</tr>
<tr>
<td>OCT</td>
<td>rat/DMBA-induced</td>
<td>Andoh & Iino (1996)</td>
</tr>
<tr>
<td>OCT</td>
<td>rat/DMBA-induced</td>
<td>Oikawa et al. (1991)</td>
</tr>
<tr>
<td>EB1089</td>
<td>rat/NMU-induced</td>
<td>Colston et al. (1992b)</td>
</tr>
<tr>
<td>EB1089</td>
<td>mouse/Sum159T cells</td>
<td>Flanagan et al. (1997)</td>
</tr>
<tr>
<td>EB1089</td>
<td>mouse/MCF-7 xenografts</td>
<td>VanWeelden et al. (1998)</td>
</tr>
<tr>
<td>EB1089</td>
<td>rat/DMBA-induced</td>
<td>Saee et al. (1994)</td>
</tr>
<tr>
<td>CB1093</td>
<td>rat/NMU-induced</td>
<td>Danielsson et al. (1997)</td>
</tr>
<tr>
<td>CB1093</td>
<td>mouse/MCF-7 xenografts</td>
<td>El Abdaimi et al. (2000)</td>
</tr>
<tr>
<td>1αOD5</td>
<td>rat/NMU-induced</td>
<td>Mehta et al. (1997)</td>
</tr>
<tr>
<td>Ro-25-6760</td>
<td>mouse/MCF-7 xenograft</td>
<td>Koshizuka et al. (1999a)</td>
</tr>
<tr>
<td>Ro-24-5331</td>
<td>rat/NMU-induced</td>
<td>Anzano et al. (1994)</td>
</tr>
<tr>
<td>TX 522</td>
<td>mouse/MCF-7 xenograft</td>
<td>Verlinden et al. (2000)</td>
</tr>
<tr>
<td>TX 527</td>
<td>mouse/MCF-7 xenograft</td>
<td>Verlinden et al. (2000)</td>
</tr>
<tr>
<td>Combination treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB1093 + taxol</td>
<td>mouse/MCF-7 xenografts</td>
<td>Koshizuka et al. (1998)</td>
</tr>
<tr>
<td>CB1093 + cisplatin</td>
<td>mouse/MCF-7 xenografts</td>
<td>Koshizuka et al. (1998)</td>
</tr>
<tr>
<td>EB1089 + tamoxifen</td>
<td>rat/NMU-induced</td>
<td>Mackay et al. (1996)</td>
</tr>
<tr>
<td>EB1089 + ICI 182,780</td>
<td>mouse/MCF-7 xenograft</td>
<td>Packman et al. (2000)</td>
</tr>
<tr>
<td>OCT + tamoxifen</td>
<td>mouse/MCF-7 xenograft</td>
<td>Abe-Hashimoto et al. (1993)</td>
</tr>
<tr>
<td>OCT + aromatase inhibitor</td>
<td>rat/DMBA-induced</td>
<td>Andoh & Iino (1996)</td>
</tr>
<tr>
<td>EB1089 + ATRA</td>
<td>mouse/MCF-7 xenograft</td>
<td>Koshizuka et al. (1999b)</td>
</tr>
<tr>
<td>Ro-25-6760 + ATRA</td>
<td>mouse/MCF-7 xenograft</td>
<td>Koshizuka et al. (1999b)</td>
</tr>
<tr>
<td>Ro-25-6760 + taxol</td>
<td>mouse/MCF-7 xenograft</td>
<td>Koshizuka et al. (1999a)</td>
</tr>
<tr>
<td>EB1089 + taxol</td>
<td>mouse/MCF-7 xenograft</td>
<td>Koshizuka et al. (1999a)</td>
</tr>
<tr>
<td>Ro-24-5331</td>
<td>rat/NMU-induced</td>
<td>Anzano et al. (1994)</td>
</tr>
</tbody>
</table>

OCT, maxacalcitol; mets, metastases; 1αOD5, 1α-hydroxyvitamin D5; ATRA, all-trans retinoic acid.

Other vitamin D analogues with antitumour effects in breast cancer models

The Hoffmann-LaRoche compound Ro-25-6760 is a 19-norhexafluoride analogue that has been demonstrated to suppress growth of human breast cancer cells *in vitro* (Koike et al. 1997) and to inhibit tumour progression in nude mice bearing MCF-7 xenografts. Enhanced effects on tumour progression were reported in combination with paclitaxel (Koshizuka et al. 1999a). Other 19-nor analogues have recently been described that also demonstrate anti-cancer effects in human breast cancer cells *in vitro* and *in vivo* (Verlinden et al. 2000). In addition, 1α-hydroxyvitamin D3 was reported to prevent the development of mammary tumours in rats treated with NMU (Mehta et al. 2000). Elstner and colleagues (1995) have demonstrated inhibitory effects on growth of cultured breast cancer cells of a series of novel 20-epi vitamin D analogues. We have evaluated the efficacy of CB1093 (20-epi(S)-ethoxy-23-yne-24a,26a,27a-trihomo 1α,25-dihydroxyvitamin D3) on the progression of established NMU-induced rat mammary tumours and demonstrated that oral administration of this compound leads to significant
tumour regression (Danielsson et al. 1997). In addition, CB1093 has been shown to inhibit growth of MCF-7 xenografts when combined with paclitaxel and cisplatin (Koshizuka et al. 1998). Table 2 summarizes studies to date on effects of vitamin D analogues in animal models of breast cancer.

Future prospects

The expanding body of research with new synthetic analogues of vitamin D has demonstrated the possibility of developing compounds with differentiation of calcemic from cell regulatory effects. This research also indicates a wider role than formerly recognized for the vitamin D endocrine system in the control of mammary epithelial cell proliferation, differentiation and apoptosis. The discovery that the VDR is detectable in cancer cells of both epithelial and haemopoietic origin and that 1,25(OH)2D3 and its analogues display the ability to affect a number of processes known to be involved in tumorigenesis establishes these compounds as potential agents in cancer treatment and prevention. Of major importance in recognizing this goal is the development of analogues with selective biological profiles, and to this end an improved understanding of the mechanisms implicated in the growth modulating actions of 1,25(OH)2D3 and its analogues is needed. An increasing number of studies has indicated that an important aspect of the anti-tumour effects of vitamin D analogues in breast cancer cells is activation of the cell death pathway. Further characterization of the apoptosis-related genes that are directly or indirectly regulated by vitamin D derivatives may provide a basis for the design of new compounds that can target these pathways in breast cancer cells. A greater understanding of how the apoptotic pathway mediated by vitamin D may modulate or overlap with more established pathways leading to cell death is likely to provide clinically useful information. Studies addressing this question will suggest new ways to optimize the apoptotic response of breast cancer cells by combinations of vitamin D analogues with conventional cytotoxic agents.

References

Colston and Hansen: Effects of vitamin D in breast cancer

Koli K & Keski-Oja J 1994 1,25-Dihydroxyvitamin D3 has been shown to enhance the expression of transforming growth factor B1 and its latent form binding protein in breast carcinoma cells. *Cancer Research* **55** 1540–1547.

Mathiasen IS, Lademann U & Jaaetela M 1999 Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bel-2 but does not involve known caspases or p53. *Cancer Research* **59** 4848–4856.

Colston and Hansen: Effects of vitamin D in breast cancer

Pirianov G & Colston KW 2001α Interactions of vitamin D analogue CB1093, TNFα and ceramide on breast cancer cell apoptosis. Molecular and Cellular Endocrinology 172 59–78.

