Molecular underpinnings of enzalutamide resistance

S. Prekovic¹*, T. Van den Broeck²,³, S. Linder¹, M.E. van Royen⁴,⁵,

A.B. Houtsmuller⁴,⁵, F. Handle², S. Joniau³, W. Zwart¹,⁶,#, and F. Claessens², *,#

¹Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. ²Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium. ³Department of Urology, University Hospitals Leuven, Leuven, Belgium. ⁴Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands. ⁵Erasmus Optical Imaging Centre, Erasmus MC, 3000 CA Rotterdam, The Netherlands. ⁶Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands

shared-senior authors

*corresponding authors

Keywords: Enzalutamide, Abiraterone, Resistance, Androgen Receptor, Glycolysis, Hexosamine biosynthesis, Autophagy, Cancer, Prostate Cancer, AKR3C1, Wnt, IL-6, mCRPC, Mutations

Conflict of interest: W. Zwart receives grant support from Astellas Pharma. All other authors declare no conflict of interest.

Financial information:

Claessens F. holds grants from Fonds Wetenschappelijk Onderzoek-Vlaanderen (GOA9816N, G.0684.12N, G.0830.13N). This work was also supported by the KU Leuven (GOA/15/017) and Kom op tegen Kanker.
Abstract

Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone-dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.
Introduction

Metastatic prostate cancer (PCa) is an incurable disease with relative 5-year survival rate of 29% (Sartor and de Bono 2018). While current therapies are effective at slowing down progression of the disease, eradication of metastatic cancer is currently not achievable. Several approaches to treat this lethal disease exist, including chemotherapy and targeted therapy (Cornford, et al. 2017). Blocking the androgen receptor (AR), a main driver of disease progression is a preferred therapeutic strategy. Currently, enzalutamide is one of the most frequently used antiandrogens in treatment of the advanced disease (as discussed in this issue by Linder et al.). However, antiandrogen treatment is inevitably counteracted by a selection process, resulting in the emergence of resistant tumour clones. Prostate cancer cells have various ways to escape the shackles of AR-directed therapies, even the strongest enzalutamide treatment. This review will focus on specific resistance mechanisms discovered in vitro, but anticipated to occur in the clinics and vice versa.

AR mutations as mediators of enzalutamide resistance

Gain-of-function mutations in the AR gene are almost exclusively found in mCRPC and not in primary disease (Grossmann, et al. 2001). While nucleotide substitutions most frequently occur within the exon coding for the ligand-binding domain, mutations in other regions of the AR gene have been reported (Nadal, et al. 2017; Prekovic, et al. 2017; Watson, et al. 2015). For example, N-terminal domain and hinge region mutations have been shown to change the activation potential of the AR. For example, a small deletion between positions 388 and 390 resulted in the loss of a sumoylation site, which is also known to potentiate AR activity in vitro (Callewaert, et al. 2004). Furthermore, several mutations in the hinge region also seem to result in gain-of-function (Haelens, et al. 2007).
As mentioned above, most frequently, changes are located within the ligand-binding pocket (LBP). These can cause promiscuity of the receptor for alternative ligands or alter the mode of action of antiandrogens resulting in their conversion to potent activators of the receptor (Grossmann et al. 2001). The first clinically relevant AR mutation in PCa was detected in a metastatic specimen of a patient who underwent flutamide treatment (Taplin, et al. 1999). Following that discovery, various other mutations in the AR LBP have been detected in treatment resistant mCRPC (Coutinho, et al. 2016).

Molecular screens designed for detection of AR mutations that cause the antagonist-to-agonist switch for enzalutamide led to description of F877L, a mutation that was reported to convert enzalutamide to a partial agonist of the AR (Balbas, et al. 2013; Joseph, et al. 2013; Korpal, et al. 2013). However, this mutation has yet to be found in patients whom progressed on enzalutamide treatment. Strikingly, for now a single mutation able to convert enzalutamide to a full agonist has not been identified, despite sequencing a rather large number (n=72) of enzalutamide-treated patients (Robinson, et al. 2015).

However, several double mutant ARs which convert enzalutamide to a strong partial agonist were reported by the Vancouver Cancer Agency (Azad, et al. 2015; Lallous, et al. 2016; Wyatt, et al. 2016). In their cohort enzalutamide treatment led to the emergence of F877L/T878A and M896V/S889G double mutants which were associated with resistance (Figure 1). A detailed molecular analysis of the F877L and the double mutant F877L/T878A revealed that the second mutation is essential for enhancing the N/C interactions, coregulator interactions, and transactivation (Prekovic, et al. 2016). The second mutation expands the ligand binding pocket and potentially induces repositioning of helix 11 and helix 12 (H12) towards the ligand binding pocket, in-turn facilitating the transition into the agonis-
tic conformation of the receptor (Prekovic et al. 2016). This mutant AR is still inhibited by Abiraterone Acetate, Epi-001 and Galaterone (Andersen, et al. 2010; Attard, et al. 2009; Njar and Brodie 2015). For the M896V/S889G double mutant, it is proposed that the M896V also leads to the expansion of the LBP, while the introduction of a flexible glycine side chain might increase the mobility of H12 and facilitate the formation of activation-function 2 (AF2) (Lallous et al. 2016). The single mutant remains inhibited by enzalutamide, while for the double mutant AR enzalutamide is a partial agonist.

In conclusion, mutational events in the AR gene that lead to conversion of enzalutamide to an agonist are rare and do not contribute to resistance in the majority of the patients.

Androgen receptor splice variants

While it’s certain that hormone therapy response and resistance in PCa is marked by the emergence of truncated AR splice-variants (Antonarakis, et al. 2014; Seitz, et al. 2017), the functional mode of these AR variants is still under debate (Li, et al. 2013; Luo, et al. 2017; Watson, et al. 2010). The AR variants are structurally diverse; however, most of them lack parts or the whole ligand binding domain resulting in the inability of ligands to control their function. However, there are conflicting reports on whether truncated ARs initiate the same transcriptional program as the full length AR and whether they can activate the expression of AR target genes without the presence of full length protein (Figure 2A).

Truncated ARs could very well serve as markers of response and resistance to therapy in advanced PCa (Antonarakis et al. 2014; Cao, et al. 2014). Both in experimental and clinical setting, enzalutamide treatment indeed induces the expression of truncated ARs. Moreover, the splice variants are expressed at high levels in cell lines resistant to the enzalutamide. The truncated ARs are suggested to drive resistance to enzalutamide by recapitulating the AR
signaling even when the full length AR is blocked (Li et al. 2013). Interestingly, recent data suggest that suppressing AR splice variants can restore sensitivity to enzalutamide in xeno-graft models, implying that this could be used as a strategy to overcome antiandrogen resistance (Luo et al. 2017; Tummala, et al. 2017).

Glucocorticoid receptor takeover

There is a high similarity of molecular mechanisms behind DNA binding by the AR and the other oxosteroid hormone receptors (glucocorticoid, oestrogen, progesterone and mineralocorticoid receptor) (Figure 2B) (Denayer, et al. 2010; Schoenmakers, et al. 1999; Schoenmakers, et al. 2000; Shaffer, et al. 2004). For that reason it is conceivable that they are interchangeable in some cases of enzalutamide resistance. In PCa cell lines, the glucocorticoid receptor (GR) can indeed recapitulate part of the AR transcriptional program under castrate conditions and promote growth (Sahu, et al. 2013). Furthermore, Arrora et al. (2013) demonstrated that GR is able to support the cell cycle of PCa cells when the AR is antagonized by enzalutamide. Moreover, they showed an increase in GR expression in tumour samples from patients receiving enzalutamide therapy. Treatment with enzalutamide is also accompanied by loss of an enzyme (11β-HSD2) that inactivates cortisol, further boosting GR activity and enzalutamide resistance (Li, et al. 2017). The possible role of the GR as an oncogene in PCa is suggested by the post hoc analysis of the AFFIRM study, which has shown that patients co-treated with glucocorticoids have inferior clinical characteristics and OS rate in both placebo- (9.3 vs 15.8 months) and enzalutamide-treated (12.3 vs OS not reached) groups (Montgomery, et al. 2014).

Surprisingly, a tumor suppressor role of GR has also been described elaborately. Glucocorticoids suppress tumor angiogenesis (Yano, et al. 2006) and inhibit PCa cell growth in vitro
Nishimura, et al. 2001; Yemelyanov, et al. 2007). Furthermore, several clinical studies have shown that glucocorticoid co-treatment is beneficial for mCRPC patients in different settings (De Bono, et al. 2011; Fosså, et al. 2001; Ryan, et al. 2013; Storlie, et al. 1995; Tannock, et al. 1996). Possibly, whether the GR acts as an oncogene or a tumor suppressor gene might be influenced by interacting partners and/or chromatin remodeling proteins. For instance, one could hypothesize that pioneering factors such as FOXA1 might be involved, as it is known to regulate AR and GR transcriptional activity in a cell type specific manner (Sahu et al. 2013).

Intratumour production of androgens mediated by AKR1C3 enzyme

Intra-tumour production of androgens is able to drive PCa progression and resistance towards androgen deprivation (Locke, et al. 2008). Increase in expression of genes involved in androgen biosynthesis has been observed after ADT and antiandrogen treatment (Cai, et al. 2011; Liu, et al. 2015; Locke et al. 2008). One of these enzymes, AKR1C3, is an emerging therapeutic target in PCa and is upregulated in advanced disease (Figure 3) (Fung, et al. 2006; Hamid, et al. 2012). The AKR1C3 is an NADPH-dependent reductive enzyme that converts weak androgens (DHEA and androstendone) to more potent androgens in the prostate (testosterone and DHT) (Lin, et al. 1997). Besides that, AKR1C3 is also responsible for synthesis of several prostaglandins, which could also drive tumour progression (Matsuura, et al. 1998; Sales, et al. 2004). Evidence for a role of AKR3C1 in advanced PCa has been found in both cell line models and clinical samples of advanced disease. AKR1C3 is upregulated in PCa cell lines when grown in androgens-depleted conditions and enzalutamide (Pfeiffer, et al. 2011). Furthermore, in xenograft models it was shown that addition of AKR1C3 substrate led to an increase in transcription of KLK3 gene, which was abrogated by a selective blocker of the AKR1C3 enzyme (indomethacin) (Cai et al. 2011). Importantly, upregulation of AKR1C3
was associated with clinical progression and aggressiveness of CRPC tumours (Stanbrough, et al. 2006; Wako, et al. 2008). These data converge to the conclusion that AKR1C3 may be a driver of androgen biosynthesis and growth in advanced PCa. Inhibition of AKR1C3 by indo-methacin was already seen to be able to increase sensitivity of cancer cells to several different compounds (Byrns and Penning 2009; Verma, et al. 2016). Recently, it was shown that this compound could re-sensitize enzalutamide resistant PCa cells to enzalutamide both \textit{in vitro} and \textit{in vivo} (Liu et al. 2015). These data suggest that combining enzalutamide with AKR1C3 inhibitors may be a potential therapeutic strategy. Two clinical trials are investigating the clinical benefit of Indomethacin in locally advanced PCa (NCT02849990) and mCRPC (NCT02935205). Interestingly, it was recently described that intratumoral androgen profile differs between TMPRSS2-ERG positive and negative PCa (Knuuttila, et al. 2018). The positive status was associated with increased DHT/testosterone ratios, suggesting that TMPRSS2-ERG status could be used to identify patients that may benefit from inhibitors targeting the DHT biosynthesis (Knuuttila et al. 2018).

\textbf{Shift to aerobic glycolysis}

Over 80 years ago, Warburg hypothesised that cancer is a metabolic disorder (Warburg and Dickens 1930). While most types of normal cells produce molecules with high-energy bonds predominantly by using the oxidative decarboxylation of pyruvate, cancer cells shift towards glucose as the main source for ATP production and decrease mitochondrial respiration (Gatenby and Gillies 2004).

The metabolism of the prostate epithelial cells is unique as it favours citrate production and secretion (Costello and Franklin 2000). The Krebs cycle of these cells is altered and interrupted, resulting in low levels of citrate oxidation, diminished respiration and ATP produc-
tion (Costello and Franklin 2000; Dakubo, et al. 2006). While in most cancer types there is an initial switch towards aerobic glycolysis (less energy-efficient process per glucose molecule), in primary prostate cancer (PCa) there is a restoration of the Krebs cycle which results in more energy being produced per glucose molecule (Costello and Franklin 2000, 1998). Fascinatingly, it seems that the PCa cells induce the Warburg effect in their neighbouring stromal fibroblasts, which hence secrete lactate and pyruvate that can be used by cancer cells (Di Vizio, et al. 2009). Furthermore, during the course of disease progression of PCa there is yet another metabolic shift leading to an increase in glycolytic flux and hypoxic signalling within the cancer cells, which are correlated with poor prognosis (Pertega-Gomes, et al. 2015).

Shift towards or increase in flux of glycolysis has been observed in various types of drug-resistant cancer, as well as PCa resistant to enzalutamide (Bhattacharya, et al. 2016; Cui, et al. 2014). Overexpression of the NFkB family member p52 leads in PCa cells to an increase in glycolytic capacity and to enzalutamide resistant phenotype in preclinical models (Figure 4A) (Cui et al. 2014). High levels of p52 intensify the flux of both glycolysis and pentose phosphate pathway, leading to an increase in ATP production, which supports evasion of apoptosis and fast growth (Cui et al. 2014; Lunt and Vander Heiden 2011). The shift to aerobic glycolysis can be achieved through other pathways besides the NFkB, like IGF and PI3K signalling. Interestingly, these are recurrently mutated in CRPC (Roberts Jr 2004; Robinson et al. 2015). Whether they contribute to resistance to antiandrogens via increase in aerobic glycolysis remains to be determined.

As there is multiple evidence that high glycolytic flux supports aggressiveness and drug-resistance in PCa, targeting glucose metabolism could be a therapeutic alley. Although not effective as monotherapy, 2-dexoglucose (a glucose analogue that has 2-hydroxyl group re-
placed by hydrogen) could be an alternative therapy in combination with radiation therapy or other drugs such as autophagy inhibitors (Dwarakanath, et al. 2009; Gupta, et al. 2009; Stein, et al. 2010).

Changes in the hexosamine biosynthetic pathway

Recent reports have suggested that the hexosamine biosynthetic pathway (HBP) may play a role in antiandrogen resistance (Figure 4A). This pathway accounts for about 2-5% of total glucose metabolism and is important for post-translational protein modifications, synthesis of glycolipids, proteoglycans and glycosylphosphatidylinositol anchors (Chatham, et al. 2008; Munkley, et al. 2016).

The HBP gives yield to UDP-GlcNAc, an amino-sugar conjugate that is used to modify proteins. Upregulation of crucial enzymes for UDP-glycosylation (OGT) and elevated glycosylation have been associated with poor prognosis, possibly by promoting metabolic reprogramming of PCa cells (Itkonen, et al. 2016; Kamigaito, et al. 2014; Lynch, et al. 2012). The HBP was identified as one of the biochemical drivers of CRPC progression by mediating the metabolic re-wiring which supports cell growth (Itkonen et al. 2016; Kaushik, et al. 2016). This pathway may also increase aerobic glycolysis which was seen to be one of the main characteristics of advanced PCa (Ma and Vosseller 2014).

Recently it was found that proliferation of CRPC-like cells can be inhibited by treatment with UDP-N-acetylglucosamine and the combination with enzalutamide led to further enhancement in efficacy of the therapy (Kaushik et al. 2016). Furthermore, inhibition of OGT, which is the enzyme that processes the UDP-GlcNAc, can also induce cancer cell death (Itkonen et al. 2016). Direct inhibitors that target the OGT enzyme have been developed (Trapannone,
et al. 2016), but their specificity should be enhanced before they can be tested in preclinical and clinical development.

Autophagy

Besides relaying on glucose metabolism, cancer cells can resort to autophagy for their survival. Similar to glycolysis, autophagy has been linked to drug resistance in several cancer types as well as in the survival of cells under unfavorable conditions including androgen deprivation (Chhipa, et al. 2011; Li, et al. 2008).

As discussed above the PI3K/Akt signalling is altered in CRPC (Robinson et al. 2015). This signalling cascade results in activation of mTOR which is an enticing therapeutic target as shown in preclinical settings (Sparks and Guertin 2010). Multiple clinical trials with mTOR inhibitors have been conducted in the CRPC setting. In a systematic review, it was concluded that unfortunately these drugs lack efficacy in the clinical setting. However the analysis also encouraged combined therapy with AR or PI3K inhibitors (Statz, et al. 2016).

The AR is a negative regulator of autophagy and the inhibition of the AR stimulates autophagic activity in PCa cells (Boutin, et al. 2013). It was observed that cells insensitive to Enzalutamide have high rates of autophagy (Figure 4B). Inhibition of the AR leads to activation of autophagy through the activation of AMP-dependent protein kinase (AMPK) and suppression of mTOR signalling (Nguyen, et al. 2014b). Combined therapy with enzalutamide and metformin was able to reduce tumour growth significantly more than either of them alone. These results suggest that using autophagy modulators such as metformin may be beneficial for patients on enzalutamide therapy or after the therapy (Nguyen et al. 2014b). Even though current clinical studies show that use of metformin has only a slight beneficial effect as monotherapy for advanced PCa (Rothermundt, et al. 2014), the study to evaluate
the effect of metformin in combination with enzalutamide was started (NCT02339168). To date, it was observed that combination of the two was well tolerated and the efficacy results supported continued study in the patients with CRPC (Parikh, et al. 2018). Other than that, a phase II clinical trial evaluating whether the combination of enzalutamide and metformin in CRPC patients progressing on ADT is better than enzalutamide alone (NCT02640534).

Activation of Canonical and non-canonical Wnt signalling

Under normal physiological conditions, the Wnt pathway regulates growth of the embryo and maintenance of the stem cell populations (Logan and Nusse 2004). There are two types of Wnt signalling: canonical and non-canonical. The canonical Wnt signalling is mediated by binding of Wnt ligand to Frizzled protein which in-turn stabilizes beta-catenin, the main executor of the canonical pathway (Logan and Nusse 2004). The non-canonical Wnt signalling is an alternative mode in which beta-catenin is not involved (Gómez-Orte, et al. 2013). Changes in both canonical and non-canonical Wnt signalling have been observed in CRPC. Mutations in *CTNNB1* are frequent in metastatic samples (Chesire, et al. 2000). Expression levels of Wnt-1 and beta-catenin were increased in ~80% of metastatic hormone refractory tumours (Chen, et al. 2004). Recently, by looking at genome-wide changes in advanced metastatic tumours Robinson *et al.* were able to identify Wnt pathway genomic alterations in 18% of the samples (Robinson et al. 2015). Interestingly, the Wnt pathway is also enriched in enzalutamide treated LNCaP cells suggesting that it might compensate for AR loss and be involved in clinical progression under antiandrogen treatment (Lee, et al. 2015).

The non-canonical Wnt signalling was found to be upregulated in human PCa supporting growth via potentiating AR signalling (Takahashi, et al. 2011). In bone metastases of patients treated with antiandrogens it was found that non-canonical Wnt might mediate castration
resistance (Lee, et al. 2014). Furthermore, non-canonical Wnt signalling is increased in circulating tumour cells from patients progressing under treatment with AR inhibitors. This activation seems to combat the negative effects of AR blockade (e.g. enzalutamide) and allows cells to continue proliferating (Miyamoto, et al. 2015).

As the Wnt signalling is a crucial pathway in somatic stem cell homeostasis and regenerative processes after injury, therapies blocking this pathway could have serious adverse effects (Kahn 2014). However, due to progress in the development of Wnt inhibitors, there are several clinical trials that have just been completed or are currently running, e.g. trials for Van-tictumab (NCT01957007, NCT01973309, and NCT02005315), OMP-54F28, (NCT02069145, NCT02092363, and NCT02050178) and PRI-724 (NCT01606579, and NCT02413853).

Changes in the Interleukin 6 signalling pathway

Inflammation has an important role in PCa pathogenesis by modulating the tumour microenvironment. Among many molecules that are involved in the process of inflammation, interleukin 6 (IL-6) has been studied extensively in the context of PCa biology. IL-6 controls the acute phase response, regulates immune cell differentiation and activation, and supports cell proliferation and survival. By binding to a membrane receptor, IL-6 triggers phosphorylation of Stat3 by JAK, and concomitant translocation of dimeric Stat3 to the nucleus and regulation of its target genes (Yu, et al. 2014).

It is clear that IL-6 plays a role in PCa progression and aggressiveness. For example, the serum levels of this cytokine are high in patients with bone metastases (Ara and DeClerck 2010; Shariat, et al. 2001) and are also associated with shorter survival time in CRPC setting (George, et al. 2005). The role of IL-6 in prostate carcinogenesis and progression has been well reviewed by Nguyen et al., (Nguyen, et al. 2014a), Z Culig et al., (Culig, et al. 2005)
and Smith et al. (Smith, et al. 2001). Involvement of IL-6 in resistance to enzalutamide has been studied in cell line models. The constitutive expression of IL-6 led to persistent activation of Stat3 and loss of sensitivity to enzalutamide (Liu, et al. 2014b). The inhibition of Stat3 leads to restoration of sensitivity to enzalutamide. Niclosamide (inhibitor of AR-V7) also inhibits Stat3 phosphorylation and signalling. This drug might therefore be a promising candidate for overcoming enzalutamide resistance and advanced PCa (Liu, et al. 2014a).

The IL-6 axis inhibitors have been subjected to clinical investigation in numerous trials. For now, only one IL-6 axis inhibitor has been used for treatment of PCa. The CNTO328, a monoclonal antibody to IL-6, showed minimal activity as monotherapy for treatment of men with CRPC whom progressed on docetaxel (Dorff, et al. 2010). As the IL-6 axis might be one of the drivers of PCa progression and therapy resistance, development of novel agents and initiation of clinical trials for PCa is needed.

Lineage plasticity and antiandrogen resistance are mediated by SOX2

It is becoming clear that cells could switch lineage from a cell type that is sensitive to a certain compound to another cell type that is resistant. Recent publications by Mu et al. and Ku et al. describe the mechanism behind cell lineage plasticity in prostate cancer and how this influences therapy (Ku, et al. 2017; Mu, et al. 2017).

Alternations in TP53 and RB1 can be found in 39% of mCRPC with adenocarcinoma histology and 74% of mCRPC with neuroendocrine histology, whereas these alternations are only found in 5% of primary PCa specimens. Upon loss of expression of these two molecules, there is a concomitant increase in SOX2 expression. SOX2 is a transcription factor essential for maintenance of pluripotency and has a role in embryonic and neuronal stem cell maintenance. Activation of SOX2 transcriptional program induces lineage plasticity and allows...
switch in cell type, which in turn enables cells to adapt under selective pressure of the
treatment. Cells expressing SOX2 would be able to escape AR inhibition by adopting a more
neuroendocrine phenotype.

Development of neuroendocrine prostate cancer

The neuroendocrine phenotype of prostate cancer (NEPC; Figure 5) has a high metastatic
and proliferative potential marked by overexpression of key cell cycle genes (Beltran, et al.
2011; Tzelepi, et al. 2012). Even though the phenotype of NEPC is complex and can vary
greatly (e.g. small cell carcinoma, large cell carcinoma, paneth cell-like neuroendocrine dif-
ferentiation, etc.), clinically these tumors are characterized by positive staining for chro-
mogranin, synaptophysin, neuron specific enolase, and CD56 (Abrahamsson 1999; Evans, et
al. 2006; Isshiki, et al. 2002; Vashchenko and Abrahamsson 2005). On a molecular level NEPC
is characterized by low transcriptional activity of the AR, loss of tumor suppressors (RB1,
PTEN, and TP53), genomic instability, downregulation of REST, changes in IL-6 signaling, and
Logothetis, et al. 2013; Smith, et al. 2008). As these tumors are clinically hormone refractory
and resistant to anti-androgens such as enzalutamide, the question is which therapy could
be used to treat this aggressive subtype.

Small-cell lung cancer and extrapulmonary small-cell carcinomas are treated with platinum-
based chemotherapy, however, due to the lack of prospective data it is not clear whether
this approach is effective in NEPC (Nadal, et al. 2014). As NEPC is marked by upregulation of
cell cycle genes, one possible way of combating NEPC is targeting the cell cycle machinery. A
multi-institutional single-arm, open-label Phase II trial evaluating alisertib, inhibitor of
AURKA (Kelly, et al. 2012), in patients with histologically confirmed or clinically suspected
metastatic NEPC (NCT01799278) failed to meet its primary endpoint (Sheahan and Ellis 2018). On the other hand, data from this trial suggests that in a subset of patients alisertib may be highly effective. A potential alternative therapeutic approach would be to use disulfiram in combination with copper chloride which act through the increase in reactive oxygen species production, and inhibition of DNA methyltransferase and ubiquitin-proteasome pathway (Safi, et al. 2014). The use of this drug has shown success in preclinical models of PCa. At this moment a clinical trial is being set up for evaluating the efficacy of this therapy in patients with CRPC and NEPC (NCT02963051).

General conclusions

There are many possible mechanisms that have the potential to lead to enzalutamide resistance. The pathways involving the AR signaling are well characterized, however new concepts are still emerging (e.g. somatically acquired enhancer as a non-coding driver of enzalutamide resistance (Takeda, et al. 2018)). The adaptations of cancer cells to the presence of enzalutamide by changes in metabolic pathways (glycolysis, hexosamine), in alternative pathways like autophagy, Wnt, interleukin signalling and even in the development of NEPC clearly shows that we need to do a better job in classifying the advanced disease. Only through such more detailed classifications, patient-tailored, rationales for personal or precision medicine can be developed.
References

Ara T & DeClerck YA 2010 Interleukin-6 in bone metastasis and cancer progression. European journal of cancer 46 1223-1231.

Hamid ARA, Pfeiffer MJ, Verhaegh G, Schaafsma H, Brandt A, Sweep F, Sedelaar JP & Schalken JA 2012 Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer.

Itkonen HM, Gorad SS, Duveau DY, Martin SE, Barkovskaya A, Bathen TF, Moestue SA & Mills IG 2016
Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism. Oncotarget 7
12464-12476.

Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, Moon M, Maneval EC, Chen I & Darimont B
2013 A clinically relevant androgen receptor mutation confers resistance to second-generation anti-
androgens enzalutamide and ARN-509. Cancer discovery 3 1020-1029.

Kamigaito T, Okaneya T, Kawakubo M, Shimojo H, Nishizawa O & Nakayama J 2014 Overexpression of
O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients. Prostate
cancer and prostatic diseases 17 18-22.

rior gradient 2 (AGR2): Blood-based biomarker elevated in metastatic prostate cancer associated
with the neuroendocrine phenotype. The Prostate 73 306-315.

V, Vasu VT & Zhang Y 2016 Inhibition of the hexosamine biosynthetic pathway promotes castration-

2012 Targeting Aurora A kinase activity with the investigational agent alisertib increases the efficacy

Ohlsson C & Venäläinen MS 2018 Intratumoral androgen levels are linked to TMPRSS2-ERG fusion in
prostate cancer. Endocrine-related cancer ERC-18-0148.

An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100
(enzalutamide). Cancer discovery 3 1030-1043.

Munkley J, Mills IG & Elliott DJ 2016 The role of glycans in the development and progression of prostate cancer. *Nature Reviews Urology*.

Njar VC & Brodie AM 2015 Discovery and development of Galeterone (TOK-001 or VN/124-1) for the

Parikh M, Hyunj JC, Lara P, Pan C-x, Robles D & Evans CP 2018 Enzalutamide and metformin combi-
nation therapy to overcome autophagy resistance in castration resistant prostate cancer (CRPC): Cur-
rent results from a phase I study. American Society of Clinical Oncology.

S, Ramos-Montoya A & Asim M 2015 A glycolytic phenotype is associated with prostate cancer pro-
gression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for ther-
apy. The Journal of pathology 236 517-530.

Pfeiffer MJ, Smit FP, Sedelaar JP & Schalken JA 2011 Steroidogenic enzymes and stem cell markers
are upregulated during androgen deprivation in prostate cancer.

Treatment-induced changes in the androgen receptor axis: Liquid biopsies as diagnostic/prognostic
tools for prostate cancer. Molecular and cellular endocrinology.

Prekovic S, van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, Zhang KY, Van den Broeck T,
Smeets E & Spans L 2016 The effect of F877L and T878A mutations on androgen receptor response
to Enzalutamide. Molecular cancer therapeutics molcanther. 0892.2015.

Roberts Jr CT 2004 IGF-1 and prostate cancer. Biology of IGF-1: Its Interaction with Insulin in Health
and Malignant States 193.

Pritchard CC & Attard G 2015 Integrative clinical genomics of advanced prostate cancer. Cell 161
1215-1228.

& Schiess R 2014 Metformin in chemotherapy-naïve castration-resistant prostate cancer: a multicen-
ter phase 2 trial (SAKK 08/09). European urology 66 468-474.

Warburg OH & Dickens F 1930 Metabolism of tumours.

Figure caption

Figure 1. Androgen receptor mutations may cause antagonist-to-agonist switch for enzalutamide. A) Double mutant F877L/T878A AR has enhanced affinity for enzalutamide, an increase in N/C interactions, co-regulator interactions, and transactivation upon enzalutamide binding. B) Changes in ligand binding pocket volume and mobility of H12 that occur in S889G/M896V AR double mutant convert enzalutamide to a partial agonist of the receptor.

Figure 2. Androgen receptor splice variants and glucocorticoid takeover may mediate enzalutamide resistance. A) AR splice variants without the ligand binding domain are not under the control of the ligand, and may act either in pair with the full-length receptor or as homodimers to drive the growth despite presence of antiandrogens targeting the ligand binding domain. B) Glucocorticoid receptor may hijack the androgen response elements and drive the growth of prostate cancer when the AR is inhibited by enzalutamide. E = Element

Figure 3. Enzymes involved in steroidal biosynthesis mediate intratumoral production of testosterone. Increase in expression of AKR1C3 gene leads to increase in conversion of androstenedione to testosterone within the cancer cells; this allows reactivation of the AR signalling despite the presence of antagonists.

Figure 4. Metabolic alterations can lead to sustained growth and enzalutamide resistance. A) Increase in glycolytic flux or hexosmaine biosynthesis may drive cellular growth and annul the inhibitory effect of enzalutamide. B) Androgen receptor inhibition leads to activation of AMPK, which regulates autophagy through inhibition of mTOR and activation of Ulk1, this in turn leads to cell survival.
Figure 5. Histology and characteristics of prostate adenocarcinoma and neuroendocrine prostate cancer. Prostate adenocarcinoma (image taken from (Gordetsky and Epstein 2016) and neuroendocrine disease (image taken from (Grigore, et al. 2015)) have different histology and molecular characteristics.
A

AR WT
Antagonistic mode

AR F877L/T878A
Agonistic mode

B

AR WT
Antagonistic mode

AR M896V/S889G
Agonistic mode
Androstendione
Testosterone
AKR1C3
RNA Pol
AR
KLK3
A

AR splice variant

AR

or?

KLK3

B

AR

GR

KLK3

Glucocorticoids

Testosterone

Enzalutamide

or?
A Glycolysis and hexosamine biosynthesis

- Glucose
- Hexosamine biosynthesis
- Glycosylation
- p53
- Transcription
- Pyruvate
- Lactate
- ATP

B Autophagy

- Androgen receptor target gene transcription
- AMPK
- mTOR
- raptor
- Ulk1
- Autophagy
- Cell survival
<table>
<thead>
<tr>
<th>Clinical markers</th>
<th>Molecular characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR, PSA, Gleason score</td>
<td>High AR activity, TMPRSS2-ERG fusion, MYC amplifications, PTEN loss, SPOP mutations, Loss of tumor suppressors</td>
</tr>
<tr>
<td>Chromogranin, Neuron specific enolase, Synaptophysin, CD56, Cellular features</td>
<td>Low activity of the AR, Genomic instability, Changes in IL-6 signaling, REST low, MYCN amplifications, AURKA amplifications, Loss of tumor suppressors</td>
</tr>
</tbody>
</table>

Prostatic adenocarcinoma

Neuroendocrine prostate cancer

![Prostatic adenocarcinoma](image1)

![Neuroendocrine prostate cancer](image2)