Search Results

You are looking at 1 - 10 of 10 items for

  • Abstract: Pituitary x
  • Abstract: Hypothalamus x
  • Abstract: Notch x
  • Abstract: Hypopituitarism x
  • Abstract: acromegaly x
  • Open access x
Clear All Modify Search
Open access

Patrick Petrossians, Adrian F Daly, Emil Natchev, Luigi Maione, Karin Blijdorp, Mona Sahnoun-Fathallah, Renata Auriemma, Alpha M Diallo, Anna-Lena Hulting, Diego Ferone, Vaclav Hana Jr, Silvia Filipponi, Caroline Sievers, Claudia Nogueira, Carmen Fajardo-Montañana, Davide Carvalho, Vaclav Hana, Günter K Stalla, Marie-Lise Jaffrain-Réa, Brigitte Delemer, Annamaria Colao, Thierry Brue, Sebastian J C M M Neggers, Sabina Zacharieva, Philippe Chanson, and Albert Beckers

Acromegaly is a rare disorder caused by chronic growth hormone (GH) hypersecretion. While diagnostic and therapeutic methods have advanced, little information exists on trends in acromegaly characteristics over time. The Liège Acromegaly Survey (LAS) Database, a relational database, is designed to assess the profile of acromegaly patients at diagnosis and during long-term follow-up at multiple treatment centers. The following results were obtained at diagnosis. The study population consisted of 3173 acromegaly patients from ten countries; 54.5% were female. Males were significantly younger at diagnosis than females (43.5 vs 46.4 years; P < 0.001). The median delay from first symptoms to diagnosis was 2 years longer in females (P = 0.015). Ages at diagnosis and first symptoms increased significantly over time (P < 0.001). Tumors were larger in males than females (P < 0.001); tumor size and invasion were inversely related to patient age (P < 0.001). Random GH at diagnosis correlated with nadir GH levels during OGTT (P < 0.001). GH was inversely related to age in both sexes (P < 0.001). Diabetes mellitus was present in 27.5%, hypertension in 28.8%, sleep apnea syndrome in 25.5% and cardiac hypertrophy in 15.5%. Serious cardiovascular outcomes like stroke, heart failure and myocardial infarction were present in <5% at diagnosis. Erythrocyte levels were increased and correlated with IGF-1 values. Thyroid nodules were frequent (34.0%); 820 patients had colonoscopy at diagnosis and 13% had polyps. Osteoporosis was present at diagnosis in 12.3% and 0.6–4.4% had experienced a fracture. In conclusion, this study of >3100 patients is the largest international acromegaly database and shows clinically relevant trends in the characteristics of acromegaly at diagnosis.

Open access

Paraskevi Xekouki, Emily J Lodge, Jakob Matschke, Alice Santambrogio, John R Apps, Ariane Sharif, Thomas S Jacques, Simon Aylwin, Vincent Prevot, Ran Li, Jörg Flitsch, Stefan R Bornstein, Marily Theodoropoulou, and Cynthia L Andoniadou

Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here, we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null-cell adenomas, adamantinomatous craniopharyngiomas (ACPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knockdown of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments.

Open access

Laura C Hernández-Ramírez, Ryhem Gam, Nuria Valdés, Maya B Lodish, Nathan Pankratz, Aurelio Balsalobre, Yves Gauthier, Fabio R Faucz, Giampaolo Trivellin, Prashant Chittiboina, John Lane, Denise M Kay, Aggeliki Dimopoulos, Stephan Gaillard, Mario Neou, Jérôme Bertherat, Guillaume Assié, Chiara Villa, James L Mills, Jacques Drouin, and Constantine A Stratakis

The CABLES1 cell cycle regulator participates in the adrenal–pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing’s disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene.

Open access

Petteri Ahtiainen, Victoria Sharp, Susana B Rulli, Adolfo Rivero-Müller, Veronika Mamaeva, Matias Röyttä, and Ilpo Huhtaniemi

The etiology of pituitary adenomas remains largely unknown, with the exception of involvement of estrogens in the formation of prolactinomas. We have examined the molecular pathogenesis of prolactin-producing pituitary adenomas in transgenic female mice expressing the human choriongonadotropin (hCG) β-subunit. The LH/CG bioactivity is elevated in the mice, with consequent highly stimulated ovarian progesterone (P4) production, in the face of normal estrogen secretion. Curiously, despite normal estrogen levels, large prolactinomas developed in these mice, and we provide here several lines of evidence that the elevated P4 levels are involved in the growth of these estrogen-dependent tumors. The antiprogestin mifepristone inhibited tumor growth, and combined postgonadectomy estradiol/P4 treatment was more effective than estrogen alone in inducing tumor growth. Evidence for direct growth-promoting effect of P4 was obtained from cultures of primary mouse pituitary cells and rat somatomammotroph GH3 cells. The mouse tumors and cultured cells revealed stimulation of the cyclin D1/cyclin-dependent kinase 4/retinoblastoma protein/transcription factor E2F1 pathway in the growth response to P4. If extrapolated to humans, and given the importance of endogenous P4 and synthetic progestins in female reproductive functions and their pharmacotherapy, it is relevant to revisit the potential role of these hormones in the origin and growth of prolactinomas.

Open access

Thomas Cuny, Caroline Zeiller, Martin Bidlingmaier, Céline Défilles, Catherine Roche, Marie-Pierre Blanchard, Marily Theodoropoulou, Thomas Graillon, Morgane Pertuit, Dominique Figarella-Branger, Alain Enjalbert, Thierry Brue, and Anne Barlier

Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (P<0.0001 vs control). A dose-dependent inhibition of PRL secretion occurred in three mixed GH/PRL adenomas under PEG with a maximum of 52.8±11.5% at 10μg/mL (P<0.0001 vs control). No impact on proliferation of either human primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation.

Open access

R Formosa, J Borg, and J Vassallo

Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.

Open access

I Ben-Batalla, S Seoane, M Macia, T Garcia-Caballero, L O Gonzalez, F Vizoso, and R Perez-Fernandez

The transcription factor Pit-1/Pou1f1 regulates GH and prolactin (PRL) secretion in the pituitary gland. Pit-1 expression and GH regulation by Pit-1 have also been demonstrated in mammary gland. However, no data are available on the role of Pit-1 on breast PRL. To evaluate this role, several human breast cancer cell lines were transfected with either the Pit-1 expression vector or a Pit-1 small interference RNA construct, followed by PRL mRNA and protein evaluation. In addition, transient transfection of MCF-7 cells by a reporter construct containing the proximal PRL promoter, and ChIP assays were performed. Our data indicate that Pit-1 regulates mammary PRL at transcriptional level by binding to the proximal PRL promoter. We also found that Pit-1 raises cyclin D1 expression before increasing PRL levels, suggesting a PRL-independent effect of Pit-1 on cell proliferation. By using immunohistochemistry, we found a significant correlation between Pit-1 and PRL expression in 94 human breast invasive ductal carcinomas. Considering the possible role of PRL in breast cancer disorders, the function of Pit-1 in breast should be the focus of further research.

Open access

G Carreno, J K R Boult, J Apps, J M Gonzalez-Meljem, S Haston, R Guiho, C Stache, L S Danielson, A Koers, L M Smith, A Virasami, L Panousopoulos, M Buchfelder, T S Jacques, L Chesler, S P Robinson, and J P Martinez-Barbera

Pharmacological inhibition of the sonic hedgehog (SHH) pathway can be beneficial against certain cancers but detrimental in others. Adamantinomatous craniopharyngioma (ACP) is a relevant pituitary tumour, affecting children and adults, that is associated with high morbidity and increased mortality in long-term follow-up. We have previously demonstrated overactivation of the SHH pathway in both human and mouse ACP. Here, we show that this activation is ligand dependent and induced by the expression of SHH protein in a small proportion of tumour cells. We investigate the functional relevance of SHH signalling in ACP through MRI-guided preclinical studies using an ACP mouse model. Treatment with vismodegib, a clinically approved SHH pathway inhibitor, results in a significant reduction in median survival due to premature development of highly proliferative and vascularised undifferentiated tumours. Reinforcing the mouse data, SHH pathway inhibition in human ACP leads to a significant increase in tumour cell proliferation both ex vivo, in explant cultures, and in vivo, in a patient-derived xenograft model. Together, our results demonstrate a protumourigenic effect of vismodegib-mediated SHH pathway inhibition in ACP.

Open access

W Imruetaicharoenchoke, A Fletcher, W Lu, R J Watkins, B Modasia, V L Poole, H R Nieto, R J Thompson, K Boelaert, M L Read, V E Smith, and C J McCabe

Pituitary tumor-transforming gene 1-binding factor (PTTG1IP; PBF) is a multifunctional glycoprotein, which is overexpressed in a wide range of tumours, and significantly associated with poorer oncological outcomes, such as early tumour recurrence, distant metastasis, extramural vascular invasion and decreased disease-specific survival. PBF transforms NIH 3T3 fibroblasts and induces tumours in nude mice, while mice harbouring transgenic thyroidal PBF expression show hyperplasia and macrofollicular lesions. Our assumption that PBF becomes an oncogene purely through increased expression has been challenged by the recent report of mutations in PBF within the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We therefore sought to determine whether the first 10 PBF missense substitutions in human cancer might be oncogenic. Anisomycin half-life studies revealed that most mutations were associated with reduced protein stability compared to wild-type (WT) PBF. Proliferation assays narrowed our interest to two mutational events which significantly altered cell turnover: C51R and R140W. C51R was mainly confined to the endoplasmic reticulum while R140W was apparent in the Golgi apparatus. Both C51R and R140W lost the capacity to induce cellular migration and significantly reduced cell invasion. Colony formation and soft agar assays demonstrated that, in contrast to WT PBF, both mutants were unable to elicit significant colony formation or anchorage-independent growth. However, C51R and R140W retained the ability to repress radioiodide uptake, a functional hallmark of PBF. Our data reveal new insight into PBF function and confirm that, rather than being oncogenic, mutations in PBF are likely to be passenger effects, with overexpression of PBF the more important aetiological event in human cancer.

Open access

Diana E Benn, Bruce G Robinson, and Roderick J Clifton-Bligh

The paraganglioma (PGL) syndromes types 1–5 are autosomal dominant disorders characterized by familial predisposition to PGLs, phaeochromocytomas (PCs), renal cell cancers, gastrointestinal stromal tumours and, rarely, pituitary adenomas. Each syndrome is associated with mutation in a gene encoding a particular subunit (or assembly factor) of succinate dehydrogenase (SDHx). The clinical manifestations of these syndromes are protean: patients may present with features of catecholamine excess (including the classic triad of headache, sweating and palpitations), or with symptoms from local tumour mass, or increasingly as an incidental finding on imaging performed for some other purpose. As genetic testing for these syndromes becomes more widespread, presymptomatic diagnosis is also possible, although penetrance of disease in these syndromes is highly variable and tumour development does not clearly follow a predetermined pattern. PGL1 syndrome (SDHD) and PGL2 syndrome (SDHAF2) are notable for high frequency of multifocal tumour development and for parent-of-origin inheritance: disease is almost only ever manifest in subjects inheriting the defective allele from their father. PGL4 syndrome (SDHB) is notable for an increased risk of malignant PGL or PC. PGL3 syndrome (SDHC) and PGL5 syndrome (SDHA) are less common and appear to be associated with lower penetrance of tumour development. Although these syndromes are all associated with SDH deficiency, few genotype–phenotype relationships have yet been established, and indeed it is remarkable that such divergent phenotypes can arise from disruption of a common molecular pathway. This article reviews the clinical presentations of these syndromes, including their component tumours and underlying genetic basis.