Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nicole Bechmann x
  • Refine by Access: Open Access content only x
Clear All Modify Search
Open access

Susan Richter, Timothy J Garrett, Nicole Bechmann, Roderick J Clifton-Bligh, and Hans K Ghayee

Metabolites represent the highest layer of biological information. Their diverse chemical nature enables networks of chemical reactions that are critical for maintaining life by providing energy and building blocks. Quantification by targeted and untargeted analytical methods using either mass spectrometry or nuclear magnetic resonance spectroscopy has been applied to pheochromocytoma/paraganglioma (PPGL) with the long-term goal to improve diagnosis and therapy. PPGLs have unique features that provide useful biomarkers and clues for targeted treatments. First, high production rates of catecholamines and metanephrines allow for specific and sensitive detection of the disease in plasma or urine. Secondly, PPGLs are associated with heritable pathogenic variants (PVs) in around 40% of cases, many of which occur in genes encoding enzymes, such as succinate dehydrogenase (SDH) and fumarate hydratase (FH). These genetic aberrations lead to the overproduction of oncometabolites succinate or fumarate, respectively, and are detectable in tumors and blood. Such metabolic dysregulation can be exploited diagnostically, with the aim to ensure appropriate interpretation of gene variants, especially those with unknown significance, and facilitate early tumor detection through regular patient follow-up. Furthermore, SDHx and FH PV alter cellular pathways, including DNA hypermethylation, hypoxia signaling, redox homeostasis, DNA repair, calcium signaling, kinase cascades, and central carbon metabolism. Pharmacological interventions targeted toward such features have the potential to uncover treatments against metastatic PPGL, around 50% of which are associated with germline PV in SDHx. With the availability of omics technologies for all layers of biological information, personalized diagnostics and treatment is in close reach.

Open access

Susan Richter, Bei Qiu, Mirthe Ghering, Carola Kunath, Georgiana Constantinescu, Charlotte Luths, Christina Pamporaki, Nicole Bechmann, Leah Meuter, Aleksandra Kwapiszewska, Timo Deutschbein, Svenja Nölting, Mirko Peitzsch, Mercedes Robledo, Aleksander Prejbisz, Karel Pacak, Volker Gudziol, Henri J L M Timmers, and Graeme Eisenhofer

Head and neck paragangliomas (HNPGLs) are tumors of parasympathetic origin that occur at variable locations and are often secondary to germline mutations in succinate dehydrogenase (SDH) subunit genes. Occasionally, these tumors produce catecholamines. Here, we assessed whether different locations of HNPGLs relate to the presence of SDHx mutations, catecholamine production and other presentations. In this multicenter study, we collected clinical and biochemical data from 244 patients with HNPGLs and 71 patients without HNPGLs. We clarified that jugulotympanic HNPGLs have distinct features. In particular, 88% of jugulotympanic HNPGLs arose in women, among whom only 24% occurred due to SDHx mutations compared to 55% in men. Jugulotympanic HNPGLs were also rarely bilateral, were of a smaller size and were less often metastatic compared to carotid body and vagal HNPGLs. Furthermore, we showed that plasma concentrations of methoxytyramine (MTY) were higher (P  < 0.0001) in patients with HNPGL than without HNPGL, whereas plasma normetanephrine did not differ. Only 3.7% of patients showed strong increases in plasma normetanephrine. Plasma MTY was positively related to tumor size but did not relate to the presence of SDHx mutations or tumor location. Our findings confirm that increases in plasma MTY represent the main catecholamine-related biochemical feature of patients with HNPGLs. We expect that more sensitive analytical methods will make biochemical testing of HNPGLs more practical in the future and enable more than the current 30% of patients to be identified with dopamine-producing HNPGLs. The sex-dependent differences in the development of HNPGLs may have relevance to the diagnosis, management and outcomes of these tumors.