Search Results

You are looking at 21 - 30 of 103 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • User-accessible content x
Clear All Modify Search
Free access

Fulvia Daffara, Silvia De Francia, Giuseppe Reimondo, Barbara Zaggia, Emiliano Aroasio, Francesco Porpiglia, Marco Volante, Angela Termine, Francesco Di Carlo, Luigi Dogliotti, Alberto Angeli, Alfredo Berruti, and Massimo Terzolo

Toxicity of adjuvant mitotane treatment is poorly known; thus, our aim was to assess prospectively the unwanted effects of adjuvant mitotane treatment and correlate the findings with mitotane concentrations. Seventeen consecutive patients who were treated with mitotane after radical resection of adrenocortical cancer (ACC) from 1999 to 2005 underwent physical examination, routine laboratory evaluation, monitoring of mitotane concentrations, and a hormonal work-up at baseline and every 3 months till ACC relapse or study end (December 2007). Mitotane toxicity was graded using NCI CTCAE criteria. All biochemical measurements were performed at our center and plasma mitotane was measured by an in-house HPLC assay. All the patients reached mitotane concentrations >14 mg/l and none of them discontinued definitively mitotane for toxicity; 14 patients maintained consistently elevated mitotane concentrations despite tapering of the drug. Side effects occurred in all patients but were manageable with palliative treatment and adjustment of hormone replacement therapy. Mitotane affected adrenal steroidogenesis with a more remarkable inhibition of cortisol and DHEAS than aldosterone. Mitotane induced either perturbation of thyroid function mimicking central hypothyroidism or, in male patients, inhibition of testosterone secretion. The discrepancy between salivary and serum cortisol, as well as between total and free testosterone, is due to the mitotane-induced increase in hormone-binding proteins which complicates interpretation of hormone measurements. A low-dose monitored regimen of mitotane is tolerable and able to maintain elevated drug concentrations in the long term. Mitotane exerts a complex effect on the endocrine system that may require multiple hormone replacement therapy.

Free access

Maria Cristina De Martino, Richard A Feelders, Wouter W de Herder, Peter M van Koetsveld, Fadime Dogan, Joseph A M J L Janssen, A Marlijn Waaijers, Claudia Pivonello, Steven W J Lamberts, Annamaria Colao, Ronald R de Krijger, Rosario Pivonello, and Leo J Hofland

The mTOR pathway has recently been suggested as a new potential target for therapy in adrenocortical carcinomas (ACCs). The aim of the current study is to describe the expression of the mTOR pathway in normal adrenals (NAs) and pathological adrenals and to explore whether there are correlation between the expression of these proteins and the in vitro response to sirolimus. For this purpose, the MTOR, S6K1 (RPS6KB1), and 4EBP1 (EIF4EBP1) mRNA expression were evaluated in ten NAs, ten adrenal hyperplasias (AHs), 17 adrenocortical adenomas (ACAs), and 17 ACCs by qPCR, whereas total(t)/phospho(p)-MTOR, t/p-S6K, and t/p-4EBP1 protein expression were assessed in three NAs, three AHs, six ACAs, and 20 ACCs by immunohistochemistry. The effects of sirolimus on cell survival and/or cortisol secretion in 12 human primary cultures of adrenocortical tumors (ATs) were also evaluated. In NAs and AHs, layer-specific expression of evaluated proteins was observed. S6K1 mRNA levels were lower in ACCs compared with NAs, AHs, and ACAs (P<0.01). A subset of ATs presented a moderate to high staining of the evaluated proteins. Median t-S6K1 protein expression in ACCs was lower than that in ACAs (P<0.01). Moderate to high staining of p-S6K1 and/or p-4EBP1 was observed in most ATs. A subset of ACCs not having moderate to high staining had a higher Weiss score than others (P<0.029). In primary AT cultures, sirolimus significantly reduced cell survival or cortisol secretion only in sporadic cases. In conclusion, these data suggest the presence of an activated mTOR pathway in a subset of ATs and a possible response to sirolimus only in certain ACC cases.

Free access

Patricia de Cremoux, Dan Rosenberg, Jacques Goussard, Catherine Brémont-Weil, Frédérique Tissier, Carine Tran-Perennou, Lionnel Groussin, Xavier Bertagna, Jérôme Bertherat, and Marie-Laure Raffin-Sanson

Adrenal tumors occur more frequently in women and are the leading cause of Cushing's syndrome during pregnancy. We aimed to evaluate the potential role of sex steroids in the susceptibility of women to adrenocortical tumors. We evaluated the presence of the progesterone receptor (PR), estradiol receptors (ERs), and aromatase in 5 patients with primary pigmented nodular adrenal disease (PPNAD), 15 adrenocortical adenomas (ACAs) and adjacent normal tissues, 12 adrenocortical carcinomas (ACCs), and 3 normal adrenal glands (NA). The expression of PR and ERα was evaluated by enzyme immunoassays, real-time RT-PCR, immunohistochemistry, and cytosol-based ligand-binding assays. ERβ and aromatase levels were evaluated by real-time RT-PCR. ERα concentrations were low in NA, in adrenal tissues adjacent to ACA (51±33), in ACC (53±78), and lower in ACA (11±11 fmol/mg DNA). Conversely, PR concentrations were high in NA and adrenal tissues adjacent to ACA, at 307±216 fmol/mg DNA, and were even higher in tumors – 726±706 fmol/mg DNA in ACA and 1154±1586 fmol/mg DNA in ACC – and in isolated PPNAD nodules. Binding study results in four tumors were compatible with binding to a steroid receptor. In patients with PPNAD, a strong positive immunohistochemical signal was associated with the sole isolated nodular regions. ERβ transcript levels were very high in all samples except those for two ACCs, whereas aromatase levels were low. PR and ERβ are clearly present in normal adrenal glands and adrenal tumors. Further studies may shed light on the possible pathogenic role of these receptors in adrenal proliferation.

Free access

I Bossis, A Voutetakis, T Bei, F Sandrini, K J Griffin, and C A Stratakis

The type 1 alpha regulatory subunit (R1alpha) of cAMP-dependent protein kinase A (PKA) (PRKAR1A) is an important regulator of the serine-threonine kinase activity catalyzed by the PKA holoenzyme. Carney complex (CNC) describes the association 'of spotty skin pigmentation, myxomas, and endocrine overactivity'; CNC is in essence the latest form of multiple endocrine neoplasia to be described and affects the pituitary, thyroid, adrenal and gonadal glands. Primary pigmented nodular adrenocortical disease (PPNAD), a micronodular form of bilateral adrenal hyperplasia that causes a unique, inherited form of Cushing syndrome, is also the most common endocrine manifestation of CNC. CNC and PPNAD are genetically heterogeneous but one of the responsible genes is PRKAR1A, at least for those families that map to 17q22-24 (the chromosomal region that harbors PRKAR1A). CNC and/or PPNAD are the first human diseases to be caused by mutations in one of the subunits of the PKA holoenzyme. Despite the extensive literature on R1alpha and PKA, little is known about their potential involvement in cell cycle regulation, growth and/or proliferation. The presence of inactivating germline mutations and the loss of its wild-type allele in CNC lesions indicated that PRKAR1A could function as a tumor-suppressor gene in these tissues. However, there are conflicting data in the literature about PRKAR1A's role in human neoplasms, cancer cell lines and animal models. In this report, we review briefly the genetics of CNC and focus on the involvement of PRKAR1A in human tumorigenesis in an effort to reconcile the often diametrically opposite reports on R1alpha.

Free access

A Stigliano, L Cerquetti, M Borro, G Gentile, B Bucci, S Misiti, P Piergrossi, E Brunetti, M Simmaco, and V Toscano

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p′-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, α-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-β isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

Free access

M Seki, K Nomura, D Hirohara, M Kanazawa, T Sawada, K Takasaki, and H Demura

A 58-year-old man had adrenocortical carcinoma in the right adrenal gland. The tumour secreted excessive cortisol and dehydroepiandrosterone-sulphate (DHEA-S), and had invaded the right hepatic lobe and vena cava. Eleven months after surgical tumour resection, the serum DHEA-S levels again increased. Local tumour recurrence and a metastasis was found in the lung. Eleven months after surgery chemotherapy with mitotane (o,p'-DDD) was initiated. Twelve weeks of mitotane reduced serum DHEA-S levels and caused these tumours to disappear. The patient was then treated with low-dose mitotane (1.5-2.0 g/day) for 2 years. Serum levels of mitotane remained at less than 10 microg/ml. Although such low serum levels of mitotane and delayed initiation of mitotane after surgery have been proposed to weaken the antineoplastic effect of mitotane, the patient had a remission for 2 years. However, there was then local re-recurrence with an increase in serum DHEA-S and death 4 months later. The histological features of neoplastic cells were quite different comparing tumour resected at surgery and tumour at autopsy. The latter had more frequent mitotic nuclei. This tumour was initially sensitive to mitotane, but later became insensitive.

Restricted access

Kiran Nadella, Fabio R Faucz, and Constantine A Stratakis

Protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) defects lead to primary pigmented nodular adrenocortical disease (PPNAD). The KIT protooncogene (c-KIT) is not known to be expressed in the normal adrenal cortex (AC). In this study, we investigated the expression of c-KIT and its ligand, stem cell factor (SCF), in PPNAD and other cortisol-producing tumors of the adrenal cortex. mRNA and protein expression, by qRT-PCR, immunohistochemistry (IHC) and immunoblotting (IB), respectively, were studied. We then tested c-KIT and SCF responses to PRKAR1A introduction and PKA stimulation in adrenocortical cell lines CAR47 and H295R, which were also treated with the KIT inhibitor, imatinib mesylate (IM). Mice xenografted with H295R cells were treated with IM. There was increased c-KIT mRNA expression in PPNAD; IHC showed KIT and SCF immunoreactivity within certain nodular areas in PPNAD. IB data was consistent with IHC and mRNA data. PRKAR1A-deficient CAR47 cells expressed c-KIT; this was enhanced by forskolin and lowered by PRKAR1A reintroduction. Knockdown of PKA’s catalytic subunit (PRKACA) by siRNA reduced c-KIT levels. Treatment of the CAR47 cells with IM resulted in reduced cell viability, growth arrest, and apoptosis. Treatment with IM of mice xenografted with H295 cells inhibited further tumor growth. We conclude that c-KIT is expressed in PPNAD, an expression that appears to be dependent on PRKAR1A and/or PKA activity. In a human adrenocortical cell line and its xenografts in mice, c-KIT inhibition decreased growth, suggesting that c-KIT inhibitors may be a reasonable alternative therapy to be tested in PPNAD, when other treatments are not optimal.

Restricted access

Stephanie Espiard, Ludivine Drougat, Nikolaos Settas, Sara Haydar, Kerstin Bathon, Edra London, Isaac Levy, Fabio R Faucz, Davide Calebiro, Jérôme Bertherat, Dong Li, Michael A Levine, and Constantine A Stratakis

Genetic variants in components of the protein kinase A (PKA) enzyme have been associated with various defects and neoplasms in the context of Carney complex (CNC) and in isolated cases, such as in primary pigmented nodular adrenocortical disease (PPNAD), cortisol-producing adrenal adenomas (CPAs), and various cancers. PRKAR1A mutations have been found in subjects with impaired cAMP-dependent signaling and skeletal defects; bone tumors also develop in both humans and mice with PKA abnormalities. We studied the PRKACB gene in 148 subjects with PPNAD and related disorders, who did not have other PKA-related defects and identified two subjects with possibly pathogenic PRKACB gene variants and unusual bone and endocrine phenotypes. The first presented with bone and other abnormalities and carried a de novo c.858_860GAA (p.K286del) variant. The second subject carried the c.899C>T (p.T300M or p.T347M in another isoform) variant and had a PPNAD-like phenotype. Both variants are highly conserved in the PRKACB gene. In functional studies, the p.K286del variant affected PRKACB protein stability and led to increased PKA signaling. The p.T300M variant did not affect protein stability or response to cAMP and its pathogenicity remains uncertain. We conclude that PRKACB germline variants are uncommon but may be associated with phenotypes that resemble those of other PKA-related defects. However, detailed investigation of each variant is needed as PRKACB appears to be only rarely affected in these conditions, and variants such as p.T300M maybe proven to be clinically insignificant, whereas others (such as p.K286del) are clearly pathogenic and may be responsible for a novel syndrome, associated with endocrine and skeletal abnormalities.

Free access

Barbara Mariniello, Antonio Rosato, Gaia Zuccolotto, Beatrice Rubin, Maria Verena Cicala, Isabella Finco, Maurizio Iacobone, Anna Chiara Frigo, Ambrogio Fassina, Raffaele Pezzani, and Franco Mantero

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1–2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1–2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.

Free access

Katja Kiseljak-Vassiliades, Yu Zhang, Stacey M Bagby, Adwitiya Kar, Nikita Pozdeyev, Mei Xu, Katherine Gowan, Vibha Sharma, Christopher D Raeburn, Maria Albuja-Cruz, Kenneth L Jones, Lauren Fishbein, Rebecca E Schweppe, Hilary Somerset, Todd M Pitts, Stephen Leong, and Margaret E Wierman

Adrenocortical cancer (ACC) is an orphan malignancy that results in heterogeneous clinical phenotypes and molecular genotypes. There are no curative treatments for this deadly cancer with 35% survival at five years. Our understanding of the underlying pathobiology and our ability to test novel therapeutic targets has been limited due to the lack of preclinical models. Here, we report the establishment of two new ACC cell lines and corresponding patient-derived xenograft (PDX) models. CU-ACC1 cell line and PDX were derived from a perinephric metastasis in a patient whose primary tumor secreted aldosterone. CU-ACC2 cell line and PDX were derived from a liver metastasis in a patient with Lynch syndrome. Short tandem repeat profiling confirmed consistent matches between human samples and models. Both exomic and RNA sequencing profiling were performed on the patient samples and the models, and hormonal secretion was evaluated in the new cell lines. RNA sequencing and immunohistochemistry confirmed the expression of adrenal cortex markers in the PDXs and human tumors. The new cell lines replicate two of the known genetic models of ACC. CU-ACC1 cells had a mutation in CTNNB1 and secreted cortisol but not aldosterone. CU-ACC2 cells had a TP53 mutation and loss of MSH2 consistent with the patient’s known germline mutation causing Lynch syndrome. Both cell lines can be transfected and transduced with similar growth rates. These new preclinical models of ACC significantly advance the field by allowing investigation of underlying molecular mechanisms of ACC and the ability to test patient-specific therapeutic targets.