Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Tapio Visakorpi x
  • Refine by access: Content accessible to me x
Clear All Modify Search
Konsta Kukkonen Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland

Search for other papers by Konsta Kukkonen in
Google Scholar
PubMed
Close
,
Bryn Autio-Kimura Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland

Search for other papers by Bryn Autio-Kimura in
Google Scholar
PubMed
Close
,
Hanna Rauhala Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland

Search for other papers by Hanna Rauhala in
Google Scholar
PubMed
Close
,
Juha Kesseli Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland

Search for other papers by Juha Kesseli in
Google Scholar
PubMed
Close
,
Matti Nykter Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
Foundation for the Finnish Cancer Institute, Helsinki, Finland

Search for other papers by Matti Nykter in
Google Scholar
PubMed
Close
,
Leena Latonen Foundation for the Finnish Cancer Institute, Helsinki, Finland
Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

Search for other papers by Leena Latonen in
Google Scholar
PubMed
Close
, and
Tapio Visakorpi Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
Fimlab Laboratories Ltd, Tampere, Finland

Search for other papers by Tapio Visakorpi in
Google Scholar
PubMed
Close

Prostate cancer research suffers from the lack of suitable models to study the role of normal cells in prostate carcinogenesis. To address this challenge, we developed a cell line model mimicking luminal prostate epithelial cells by modifying the immortalized prostate epithelial cell line RWPE-1 to constitutively express the androgen receptor (AR). RWPE-1-AR cells express known AR target genes, and exhibit coexpression of luminal and basal markers characteristic of transient amplifying cells, and an RNA signature resembling prostate luminal progenitor cells. Under unstimulated conditions, constitutive AR expression does not have a biologically significant effect on the proliferation of RWPE-1 cells, but when stimulated by androgens, growth is retarded. The transcriptional response of RWPE-1-AR cells to androgen stimulation involves suppression of the growth-related KRAS pathway and is thus markedly different from that of the prostate cancer cell line LNCaP and its derivative AR-overexpressing LNCaP-ARhi cells, in which growth- and cancer-related pathways are upregulated. Hence, the nonmalignant AR-positive RWPE-1-AR cell line model could be used to study the transformation of the prostate epithelium.

Open access
Mina Sattari Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Mina Sattari in
Google Scholar
PubMed
Close
,
Annika Kohvakka Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Annika Kohvakka in
Google Scholar
PubMed
Close
,
Elaheh Moradi A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

Search for other papers by Elaheh Moradi in
Google Scholar
PubMed
Close
,
Hanna Rauhala Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Hanna Rauhala in
Google Scholar
PubMed
Close
,
Henna Urhonen Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Henna Urhonen in
Google Scholar
PubMed
Close
,
William B Isaacs The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA

Search for other papers by William B Isaacs in
Google Scholar
PubMed
Close
,
Matti Nykter Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Matti Nykter in
Google Scholar
PubMed
Close
,
Teemu J Murtola Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
Department of Urology, Tampere University Hospital, Tampere, Finland

Search for other papers by Teemu J Murtola in
Google Scholar
PubMed
Close
,
Teuvo L J Tammela Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
Department of Urology, Tampere University Hospital, Tampere, Finland

Search for other papers by Teuvo L J Tammela in
Google Scholar
PubMed
Close
,
Leena Latonen Foundation for the Finnish Cancer Institute, Helsinki, Finland
Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

Search for other papers by Leena Latonen in
Google Scholar
PubMed
Close
,
G Steven Bova Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by G Steven Bova in
Google Scholar
PubMed
Close
,
Juha Kesseli Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Search for other papers by Juha Kesseli in
Google Scholar
PubMed
Close
, and
Tapio Visakorpi Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland

Search for other papers by Tapio Visakorpi in
Google Scholar
PubMed
Close

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq). First, we showed that patient-to-patient variability accounted for most of the variance in lncRNA expression between the samples, suggesting that genomic alterations in the samples are the main drivers of lncRNA expression in PCa metastasis. Subsequently, we identified 27 lncRNAs with differential expression (DE-lncRNAs) between metastases and corresponding primary tumors, suggesting that they are mCRPC-specific lncRNAs. Analyses of potential regulation by transcription factors (TFs) revealed that approximately half of the DE-lncRNAs have at least one binding site for the androgen receptor in their regulatory regions. In addition, TF enrichment analysis revealed the enrichment of binding sites for PCa-associated TFs, such as FOXA1 and HOXB13, in the regulatory regions of the DE-lncRNAs. In a cohort of prostatectomy-treated prostate tumors, four of the DE-lncRNAs showed association with progression-free time and two of them (lnc-SCFD2-2 and lnc-R3HCC1L-8) were independent prognostic markers. Our study highlights several mCRPC-specific lncRNAs that might be important in the progression of the disease to the metastatic stage and may also serve as potential biomarkers for aggressive PCa.

Open access