Search Results

You are looking at 31 - 40 of 83 items for

  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Parathy* x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Free access

Mark A White, Efrosini Tsouko, Chenchu Lin, Kimal Rajapakshe, Jeffrey M Spencer, Sandi R Wilkenfeld, Sheiva S Vakili, Thomas L Pulliam, Dominik Awad, Fotis Nikolos, Rajasekhara Reddy Katreddy, Benny Abraham Kaipparettu, Arun Sreekumar, Xiaoliu Zhang, Edwin Cheung, Cristian Coarfa, and Daniel E Frigo

Despite altered metabolism being an accepted hallmark of cancer, it is still not completely understood which signaling pathways regulate these processes. Given the central role of androgen receptor (AR) signaling in prostate cancer, we hypothesized that AR could promote prostate cancer cell growth in part through increasing glucose uptake via the expression of distinct glucose transporters. Here, we determined that AR directly increased the expression of SLC2A12, the gene that encodes the glucose transporter GLUT12. In support of these findings, gene signatures of AR activity correlated with SLC2A12 expression in multiple clinical cohorts. Functionally, GLUT12 was required for maximal androgen-mediated glucose uptake and cell growth in LNCaP and VCaP cells. Knockdown of GLUT12 also decreased the growth of C4-2, 22Rv1 and AR-negative PC-3 cells. This latter observation corresponded with a significant reduction in glucose uptake, indicating that additional signaling mechanisms could augment GLUT12 function in an AR-independent manner. Interestingly, GLUT12 trafficking to the plasma membrane was modulated by calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-5′-AMP-activated protein kinase (AMPK) signaling, a pathway we previously demonstrated to be a downstream effector of AR. Inhibition of CaMKK2-AMPK signaling decreased GLUT12 translocation to the plasma membrane by inhibiting the phosphorylation of TBC1D4, a known regulator of glucose transport. Further, AR increased TBC1D4 expression. Correspondingly, expression of TBC1D4 correlated with AR activity in prostate cancer patient samples. Taken together, these data demonstrate that prostate cancer cells can increase the functional levels of GLUT12 through multiple mechanisms to promote glucose uptake and subsequent cell growth.

Free access

Faith Nutter, Ingunn Holen, Hannah K Brown, Simon S Cross, C Alyson Evans, Matthew Walker, Robert E Coleman, Jules A Westbrook, Peter J Selby, Janet E Brown, and Penelope D Ottewell

Advanced breast cancer is associated with the development of incurable bone metastasis. The two key processes involved, tumour cell homing to and subsequent colonisation of bone, remain to be clearly defined. Genetic studies have indicated that different genes facilitate homing and colonisation of secondary sites. To identify specific changes in gene and protein expression associated with bone-homing or colonisation, we have developed a novel bone-seeking clone of MDA-MB-231 breast cancer cells that exclusively forms tumours in long bones following i.v. injection in nude mice. Bone-homing cells were indistinguishable from parental cells in terms of growth rate in vitro and when grown subcutaneously in vivo. Only bone-homing ability differed between the lines; once established in bone, tumours from both lines displayed similar rates of progression and caused the same extent of lytic bone disease. By comparing the molecular profile of a panel of metastasis-associated genes, we have identified differential expression profiles associated with bone-homing or colonisation. Bone-homing cells had decreased expression of the cell adhesion molecule fibronectin and the migration and calcium signal binding protein S100A4, in addition to increased expression of interleukin 1B. Bone colonisation was associated with increased fibronectin and upregulation of molecules influencing signal transduction pathways and breakdown of extracellular matrix, including hRAS and matrix metalloproteinase 9. Our data support the hypothesis that during early stages of breast cancer bone metastasis, a specific set of genes are altered to facilitate bone-homing, and that disruption of these may be required for effective therapeutic targeting of this process.

Restricted access

Xiong Wang, Li Ma, Qiao-yan Ding, Wen-yu Zhang, Yong-gang Chen, Jin-hu Wu, Hong-feng Zhang, and Xiu-li Guo

Prolactinomas have harmful effects on human health, and the pathogenesis is still unknown. Furthermore, 25% of prolactinoma patients do not respond to the therapy of dopamine receptor agonist in the clinic. Thus, it is important to reveal the pathogenesis and develop new therapeutic methods for prolactinomas. Herein, two animal models of prolactinomas, namely oestrogen-treated rats and transgenic D2 dopamine receptor-deficient mice, were used. PET/CT imaging detection showed that translocator protein-mediated microglia activation and inflammation significantly increased in the pituitary glands of prolactinomas rats. Messenger RNA microarrays were used to analyze and compare the differential gene and signal pathways of the pituitary glands between control and prolactinomas rats. Statistical results pertaining to gene enrichment showed that the innate immune response genes were upregulated in the pituitary glands of prolactinoma rats. This suggested that the innate immune response was activated. We analyzed the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome that is one of the most important members of the innate immune system in mammals and found that the expressions of NLRP3, Caspase-1, apoptosis-associated speck-like, interleukin 1B (IL1B) and IL18 proteins of pituitary glands in prolactinomas rats were increased considerably compared with those in control rats. This suggested the activation of the NLRP3 inflammasome during the emergence and evolution of prolactinomas. Immunohistochemistry results also confirmed that the NLRP3 expression was elevated in human prolactinoma tissues, and the microglia marker-ionised calcium binding adaptor molecule-1 was co-located with the NLRP3 protein in prolactinomas by immunofluorescence assay. Finally, compared with the WT mice, NLRP3−/− mice had smaller pituitary glands (weight/body weight) and diminished prolactin (PRL) expressions and secretions. These findings were associated with a reduction in the caspase-1 activation and maturation of IL1B. Furthermore, MCC950 decreased the PRL expression and secretion following the inhibition of NLRP3 inflammasome activation in GH3 cells stimulated with lipopolysaccharide and nigericin. And MCC950 inhibited the pituitary tumor overgrowth and PRL expression and secretion in prolactinoma rats. These data confirm that the microglial NLRP3 inflammasome activation upregulates the inflammatory cytokines IL1/IL18 in the pituitary glands and induces prolactinomas. Our findings showed that microglial NLRP3 inflammasome activation-mediated IL1B-related inflammation promoted the development of prolactinomas and identified the inflammasome as a new therapeutic target for prolactinomas.

Free access

C C Juhlin, A Villablanca, K Sandelin, F Haglund, J Nordenström, L Forsberg, R Bränström, T Obara, A Arnold, C Larsson, and A Höög

Parafibromin is a protein product derived from the hyperparathyroidism 2(HRPT2) tumor suppressor geneand its inactivation has been coupled to familial and sporadic forms of parathyroid malignancy. In this study, we have conducted immunohistochemistry on 33 parathyroid carcinomas (22 unequivocal and 11 equivocal) using four parafibromin antibodies directed to different parts of the protein. Furthermore, for a fraction of cases, the immunohistochemical results were compared with known HRPT2 mutational status. Our findings show that 68% (15 out of 22) of the unequivocal carcinomas exhibited reduced expression of parafibromin while the 25 sporadic adenomas used as controls were entirely positive for parafibromin expression. Additionally, three out of the six carcinomas with known HRPT2 mutations showed reduced expression of parafibromin. Using all four antibodies, comparable results were obtained on the cellular level in individual tumors suggesting that there exists no epitope of choice in parafibromin immunohistochemistry. The results agree with the demonstration of a ~60 kDa product preferentially in the nuclear fraction by western blot analysis. We conclude that parafibromin immunohistochemistry could be used as an additional marker for parathyroid tumor classification, where positive samples have low risk of malignancy, whereas samples with reduced expression could be either carcinomas or rare cases of adenomas likely carrying an HRPT2 mutation.

Free access

Serk In Park and Laurie K McCauley

Prostate cancer remains a leading cause of cancer-related death in men, largely attributable to distant metastases, most frequently to bones. Despite intensive investigations, molecular mechanisms underlying metastasis are not completely understood. Among prostate cancer-derived factors, parathyroid hormone-related peptide (PTHrP), first discovered as an etiologic factor for malignancy-induced hypercalcemia, regulates many cellular functions critical to tumor growth, angiogenesis, and metastasis. In this study, the role of PTHrP in tumor cell survival from detachment-induced apoptosis (i.e. anoikis) was investigated. Reduction of PTHLH (encoding PTHrP) gene expression in human prostate cancer cells (PC-3) increased the percentage of apoptotic cells when cultured in suspension. Conversely, overexpression of PTHrP protected prostate cancer cells (Ace-1 and LNCaP, both typically expressing low or undetectable basal PTHrP) from anoikis. Overexpression of nuclear localization signal (NLS)-defective PTHrP failed to protect cells from anoikis, suggesting that PTHrP-dependent protection from anoikis is an intracrine event. A PCR-based apoptosis-related gene array showed that detachment increased expression of the TNF gene (encoding the proapoptotic protein tumor necrosis factor-α) fourfold greater in PTHrP-knockdown PC-3 cells than in control PC-3 cells. In parallel, TNF gene expression was significantly reduced in PTHrP-overexpressing LNCaP cells, but not in NLS-defective PTHrP overexpressing LNCaP cells, when compared with control LNCaP cells. Subsequently, in a prostate cancer skeletal metastasis mouse model, PTHrP-knockdown PC-3 cells resulted in significantly fewer metastatic lesions compared to control PC-3 cells, suggesting that PTHrP mediated antianoikis events in the bloodstream. In conclusion, nuclear localization of PTHrP confers prostate cancer cell resistance to anoikis, potentially contributing to prostate cancer metastasis.

Free access

Joanna Grey and Kym Winter

Multiple endocrine neoplasia type 2 (MEN2) refers to the autosomal-dominant neuroendocrine tumour syndromes, MEN type 2A (MEN2A) and MEN type 2B (MEN2B). They are typified by the development of medullary thyroid cancer (MTC), phaeochromocytoma and parathyroid hyperplasia in MEN2A and MTC, phaeochromocytomas, ganglioneuromatosis and skeletal abnormalities in MEN2B. The aggressiveness of MTC is variable according to genotype, and although it is still the major cause of mortality in both conditions, prognosis has improved dramatically in those diagnosed and treated at a young age thanks to predictive genetic testing. Nevertheless, metastatic MTC, ganglioneuromatosis and a variety of other negative clinical and psychosocial impacts on quality of life and/or prognosis in MEN2 persist. In the absence, at the time of writing, of any large-scale research into quality of life specifically in MEN2, this review includes data from patient surveys and anonymised patient anecdotes from the records of the Association for Multiple Endocrine Neoplasia Disorders (AMEND), for whom the authors work. We recommend that these patients are cared for only in centres of expertise able to provide expert diagnosis, treatment and continuity of care, including psychological and transition support. Only in this way can the clinical advances of the last two and half decades be built upon further to ensure that the care of these complex, lifelong patients can be considered truly holistic.

Free access

Anna Angelousi, Georgios K Dimitriadis, Georgios Zografos, Svenja Nölting, Gregory Kaltsas, and Ashley Grossman

Tumourigenesis is a relatively common event in endocrine tissues. Currently, specific guidelines have been developed for common malignant endocrine tumours, which also incorporate advances in molecular targeted therapies (MTT), as in thyroid cancer and in gastrointestinal neuroendocrine malignancies. However, there is little information regarding the role and efficacy of MTT in the relatively rare malignant endocrine tumours mainly involving the adrenal medulla, adrenal cortex, pituitary, and parathyroid glands. Due to the rarity of these tumours and the lack of prospective studies, current guidelines are mostly based on retrospective data derived from surgical, locoregional and ablative therapies, and studies with systemic chemotherapy. In addition, in many of these malignancies the prognosis remains poor with individual patients responding differently to currently available treatments, necessitating the development of new personalised therapeutic strategies. Recently, major advances in the molecular understanding of endocrine tumours based on genomic, epigenomic, and transcriptome analysis have emerged, resulting in new insights into their pathogenesis and molecular pathology. This in turn has led to the use of novel MTTs in increasing numbers of patients. In this review, we aim to present currently existing and evolving data using MTT in the treatment of adrenal, pituitary and malignant parathyroid tumours, and explore the current utility and effectiveness of such therapies and their future evolution.

Free access

Inga-Lena Nilsson, Jan Zedenius, Li Yin, and Anders Ekbom

In order to evaluate the link between primary hyperparathyroidism (pHPT) and malignancies, cases subjected to parathyroid adenomectomy (PTX) during 1958–1997 in Sweden were identified by analyzing the National Swedish Cancer Registry. To minimize the influence of confounding by detection, cases with malignant disease diagnosed before or at the same time as pHPT or during the first year after PTX were excluded. Altogether 9782 cases (7642♀) were included and followed for up to 40 years. Thus, the study comprises 89 571 person-years of observation. The incidence of malignancies was compared with that in the Swedish population standardized for age, sex, and calendar year. An increased overall incidence of cancer was demonstrated in both genders (standardized incidence ratio (SIR) 1.43, 95% confidence interval (CI) 1.35–1.52). This remain unchanged beyond 15 years after PTX. Breast cancer contributed a quarter of the cancer incidence in women (SIR 1.44, 95% CI 1.25–1.62). An increased risk of kidney (SIR 2.40, 95% CI 1.72–3.25), colonic (SIR 1.46, 95% CI 1.19–1.77), and squamous cell skin cancer (SIR 2.79, 95% CI 2.25–3.43) was found in both genders. The risk of endocrine and pancreas cancer was increased in the minority of patients who had their PTX before the age of 40. We conclude that pHPT is associated with an increased risk of developing malignancies that persists even after PTX. This suggests a causal disassociation with the biochemical derangements caused by parathyroid adenoma, while potentially common etiological mechanisms may include genetic predisposition or acquired disability to withstand environmental influence.

Free access

Andreas Machens and Henning Dralle

Genetic association studies hinge on definite clinical case definitions of the disease of interest. This is why more penetrant mutations were overrepresented in early multiple endocrine neoplasia type 2 (MEN2) studies, whereas less penetrant mutations went underrepresented. Enrichment of genetic association studies with advanced disease may produce a flawed understanding of disease evolution, precipitating far-reaching surgical strategies like bilateral total adrenalectomy and 4-gland parathyroidectomy in MEN2. The insight into the natural course of the disease gleaned over the past 25 years caused a paradigm shift in MEN2: from the removal of target organs at the expense of greater operative morbidity to close biochemical surveillance and targeted resection of adrenal tumors and hyperplastic parathyroid glands. The lead time provided by early identification of asymptomatic MEN2 carriers under biochemical surveillance delimits a ‘window of opportunity’, within which (i) pre-emptive total thyroidectomy alone is adequate, circumventing morbidity attendant to central node dissection; (ii) subtotal ‘tissue-sparing’ adrenalectomy is sufficient, trading the risk of steroid dependency for the risk of a second pheochromocytoma in the adrenal remnant and (iii) parathyroidectomy is limited to enlarged glands, trading the risk of postoperative hypoparathyroidism for the risk of leaving behind hyperactive parathyroid glands. Future research should delineate further the mutation-specific, age-dependent penetrance of pheochromocytoma and primary hyperparathyroidism to refine the risk-oriented approach to MEN2. The sweeping changes in the management of MEN2 since the new millenium hold the hope that death and major morbidity from this uncommon disease can be eliminated in our lifetime.

Free access

Sandra Rodríguez-Rodero, Elías Delgado-Álvarez, Agustín F Fernández, Juan L Fernández-Morera, Edelmiro Menéndez-Torre, and Mario F Fraga

Aberrant epigenetics is a hallmark of cancer, and endocrine-related tumors are no exception. Recent research has been identifying an ever-growing number of epigenetic alterations in both genomic DNA methylation and histone post-translational modification in tumors of the endocrine system. Novel microarray and ultra-deep sequencing technologies have allowed the identification of genome-wide epigenetic patterns in some tumor types such as adrenocortical, parathyroid, and breast carcinomas. However, in other cancer types, such as the multiple endocrine neoplasia syndromes and thyroid cancer, tumor information is limited to candidate genes alone. Future research should fill this gap and deepen our understanding of the functional role of these alterations in cancer, as well as defining their possible clinical uses.