Search Results

You are looking at 101 - 106 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

A Karpathakis, H Dibra, and C Thirlwell

The field of epigenetics has evolved rapidly over recent years providing insight into the tumorigenesis of many solid and haematological malignancies. Determination of epigenetic modifications in neuroendocrine tumour (NET) development is imperative if we are to improve our understanding of the biology of this heterogenous group of tumours. Epigenetic marks such as DNA methylation at RASSF1A are frequent findings in NETs of all origins and may be associated with worse prognosis. MicroRNA signatures and histone modifications have been identified which can differentiate subtypes of NET and distinguish NET from adenocarcinoma in cases of diagnostic uncertainty. Historically, candidate gene-driven approaches have yielded limited insight into the epigenetics of NET. Recent progress has been facilitated by development of high-throughput tools including second-generation sequencing and arrays for analysis of the ‘epigenome’ of tumour and normal tissue, permitting unbiased approaches such as exome sequencing that identified mutations of chromatin-remodelling genes ATRX/DAXX in 44% of pancreatic NETs. Epigenetic changes are reversible and therefore represent an attractive therapeutic target; to date, clinical outcomes of epigenetic therapies in solid tumours have been disappointing; however, in vitro studies on NETs are promising and further clinical trials are required to determine utility of this class of novel agents. In this review, we perform a comprehensive evaluation of epigenetic changes found in NETs to date, including rare NETs such as phaeochromocytoma and adrenocortical tumours. We suggest priorities for future research and discuss potential clinical applications and novel therapies.

Free access

Bruno Ragazzon, Guillaume Assié, and Jérôme Bertherat

Transcriptome analysis has been successfully used to study the gene profile expression of adrenocortical tumors (ACT) for 7 years. The various studies reported to date have produced an abundance of new information on adrenocortical cancer (ACC), underlying the validity of this approach to study the molecular genetics and pathogenesis of these tumors. The gene expression profile of ACC clearly differs from that of benign adrenocortical adenomas (ACA). Interestingly, transcriptome analysis has the ability to establish a subclassification of ACC based on the gene expression profile. In particular, it is able to identify two groups of tumors with different outcomes (i.e. good prognosis and poor prognosis). This approach has been used to develop molecular markers for ACC diagnosis and prognostication. An IGF2 cluster of genes up-regulated in ACC has been identified. Transcriptome analysis has shown that, in comparison with ACA, IGF2 is indeed the gene most overexpressed in ACC. By contrast, genes associated with steroidogenesis are down-regulated in ACC. Genes controlling the cell cycle are dysregulated in ACC, and several are dramatically overexpressed. Analysis regarding the level of expression of Wnt/β-catenin and p53 signaling has shown alterations, in keeping with the known molecular somatic genetic defects of these pathways that are observed in ACC. This review summarizes the main findings of studies reporting ACC transcriptome analysis, demonstrating its power for ACT classification, and examines the resulting progress in understanding the pathogenesis of ACC. The potential for both ACC diagnosis and the identification of new therapeutic targets will be discussed.

Restricted access

Chiara Verdelli, Irene Forno, Annamaria Morotti, Riccardo Maggiore, Gilberto Mari, Leonardo Vicentini, Stefano Ferrero, Elisabetta Kuhn, Valentina Vaira, and Sabrina Corbetta

Tumors of the parathyroid glands are highly vascularized and display a microRNA (miRNA) profile divergent from normal parathyroid glands (PaNs). Angiogenic miRNAs, namely miR-126-3p, miR-126-5p, and miR-296-5p, have been found downregulated in parathyroid tumors. Here, we show that miR-126-3p expression levels are reduced in parathyroid adenomas (PAds; n = 12) compared with PaNs (n = 4). In situ hybridization (ISH) of miR-126-3p and miR-296-5p in 10 PAds show that miR-126-3p is expressed by endothelial cells lining the walls of great vessels and by cells within the thin stroma surrounding acinar structures. At variance, miR-296-5p was detectable in most PAd epithelial cells. Combining ISH for miR-126-3p with immunohistochemistry for the endothelial and mesenchymal markers CD34, CD31 and α-smooth muscle actin (αSMA), we could identify that miR-126-3p is localized in the αSMA-positive thin stroma. Further, miR-126-3p-expressing cells are enriched in the CD34-positive stromal cells surrounding epithelial cell acinar structures, a cellular pattern consistent with tumor-associated myofibroblasts (TAMs). In line with this, CD34-positive cells, sorted by FACS from PAds tissues, express miR-126-3p at higher levels than CD34-negative cells, suggesting that miR-126-3p downregulation promotes the endothelial-to-αSMA+ mesenchymal transition. In human mesenchymal stem cells derived from bone marrow (hBM-MSCs), a model of TAMs, the co-culture with PAds-derived cells for 5 days decreases miR-126-3p, while it increases VEGFA expression. At variance, adrenomedullin (ADM) expression is unaffected. Finally, overexpression of the miR-126-3p mimic in both hBM-MSCs and PAds-derived explants downregulates VEGFA expression levels. In conclusion, miR-126-3p is expressed by both endothelial cells and TAMs in PAds, and its downregulation promotes neoangiogenesis, possibly through VEGFA overexpression.

Restricted access

Kiran Nadella, Fabio R Faucz, and Constantine A Stratakis

Protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) defects lead to primary pigmented nodular adrenocortical disease (PPNAD). The KIT protooncogene (c-KIT) is not known to be expressed in the normal adrenal cortex (AC). In this study, we investigated the expression of c-KIT and its ligand, stem cell factor (SCF), in PPNAD and other cortisol-producing tumors of the adrenal cortex. mRNA and protein expression, by qRT-PCR, immunohistochemistry (IHC) and immunoblotting (IB), respectively, were studied. We then tested c-KIT and SCF responses to PRKAR1A introduction and PKA stimulation in adrenocortical cell lines CAR47 and H295R, which were also treated with the KIT inhibitor, imatinib mesylate (IM). Mice xenografted with H295R cells were treated with IM. There was increased c-KIT mRNA expression in PPNAD; IHC showed KIT and SCF immunoreactivity within certain nodular areas in PPNAD. IB data was consistent with IHC and mRNA data. PRKAR1A-deficient CAR47 cells expressed c-KIT; this was enhanced by forskolin and lowered by PRKAR1A reintroduction. Knockdown of PKA’s catalytic subunit (PRKACA) by siRNA reduced c-KIT levels. Treatment of the CAR47 cells with IM resulted in reduced cell viability, growth arrest, and apoptosis. Treatment with IM of mice xenografted with H295 cells inhibited further tumor growth. We conclude that c-KIT is expressed in PPNAD, an expression that appears to be dependent on PRKAR1A and/or PKA activity. In a human adrenocortical cell line and its xenografts in mice, c-KIT inhibition decreased growth, suggesting that c-KIT inhibitors may be a reasonable alternative therapy to be tested in PPNAD, when other treatments are not optimal.

Free access

Pasqualino Malandrino, Abir Al Ghuzlan, Marine Castaing, Jacques Young, Bernard Caillou, Jean-Paul Travagli, Dominique Elias, Thierry de Baere, Clarisse Dromain, Angelo Paci, Philippe Chanson, Martin Schlumberger, Sophie Leboulleux, and Eric Baudin

To progress in the stratification of the first-line therapeutic management of metastatic adrenocortical carcinoma (ACC), we searched for prognostic parameters of survival in patients treated with combined mitotane- and cisplatinum-based chemotherapy as first-line. We retrospectively studied prospectively collected parameters from 131 consecutive patients with metastatic ACC (44 with a tissue specimen available) treated at the Gustave Roussy Institute with mitotane- and platinum-based chemotherapy. Fifty-five patients with clinical, pathological, and morphological data available together with treatment characteristics including detailed follow-up were enrolled. Plasma mitotane levels and ERCC1 protein staining were analyzed. Response was analyzed according to RECIST criteria as well as overall survival (OS) from the start of cisplatinum-based chemotherapy. Parameters impacting on OS were evaluated by univariate analysis, and then analyzed by multivariate analysis. Using a landmark method, OS according to response to chemotherapy was analyzed. Objective response to combined mitotane- and cisplatinum-based chemotherapy was 27.3%. Median OS was 1 year. In the univariate analysis, resection of the primary, time since diagnosis, mitotane monotherapy as single first-line treatment, number of affected organs, plasma mitotane above 14 mg/l, and objective response were predictors of survival. In the multivariate analysis, mitotane level ≥14 mg/l and objective response to platinum-based chemotherapy were found to be independent predictors of survival (P=0.03 and <0.001). Our study suggests a prognostic role for mitotane therapy and objective response to platinum-based chemotherapy.

Free access

D E Schteingart, G M Doherty, P G Gauger, T J Giordano, G D Hammer, M Korobkin, and F P Worden

Adrenocortical carcinomas are rare, highly malignant tumors that account for only 0.2% of deaths due to cancer. Given the limited number of patients seen in most medical centers with this diagnosis, series usually reported are small and clinical trials not randomized or blinded. In an attempt to answer important questions concerning the management of patients with adrenal cancer, a consensus conference was organized and held at the University of Michigan in Ann Arbor, MI, 11–13 September 2003, with the participation of an international group of physicians who had reported on the largest series of patients with this disease and who had recognized basic and clinical research expertise in adrenal cortical cancer. Totally 43 questions were addressed by the presenters and recommendations discussed in plenary and breakout sessions. Evidence for the recommendations of this conference was at the 2–4+ level and based on available literature and participants’ experience.

In addition to setting up guidelines in specific areas of the diagnosis and treatment of adrenal cancer, the conference recommended and initiated the planning of an international prospective trial for treatment of patients with adrenal cancer in stages III and IV. In terms of new therapies, first trials of dendritic cell therapy in human subjects with adrenal cancer have been started, but it is too early to comment on efficacy. Different strategies of immunotherapy, including DNA vaccination are currently being tried in animal models. There are no clinical gene therapy trials for human adrenal cortical cancer. The adrenals are a preferred target for adenovirus and the results of gene therapy in preclinical studies are promising. In addition, there is evidence that histone deacetylase inhibitors can further enhance the rate of adenoviral infectivity in human adrenal cancer cells. Testing of retroviral vectors, non-viral vectors, small interfering RNA technology, and combined approaches could be performed in various laboratories. Anti-angiogenic substances have only been applied in preclinical studies. The use of these and other agents in the treatment of adrenal cancer should be hypothesis-driven and based on a thorough analysis of tumor biology.