Search Results

You are looking at 31 - 40 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

A Raitila, M Georgitsi, A Karhu, K Tuppurainen, M J Mäkinen, K Birkenkamp-Demtröder, K Salmenkivi, T F Ørntoft, J Arola, V Launonen, P Vahteristo, and L A Aaltonen

Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently observed in patients with pituitary adenoma predisposition (PAP). Though AIP mutation-positive individuals with prolactin-, mixed growth hormone/prolactin-, and ACTH-producing pituitary adenomas as well as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1 (MEN1) and Carney complex (CNC). Genes underlying MEN1 and CNC are rarely mutated in sporadic pituitary adenomas, but more often in other lesions contributing to these two syndromes. Thus far, the occurrence of somatic AIP mutations has not been studied in endocrine tumors other than pituitary adenomas. Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X) with a complete loss of the wild-type allele in the tumors. These results are in agreement with previous studies in that prolactin-producing adenomas are component tumors in PAP. The data also support the previous finding that somatic AIP mutations are not common in pituitary adenomas and suggest that such mutations are rare in other endocrine tumors as well.

Free access

K Revill, K J Dudley, R N Clayton, A M McNicol, and W E Farrell

The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where ∼50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.

Free access

C Schaaf, B Shan, M Buchfelder, M Losa, J Kreutzer, W Rachinger, G K Stalla, T Schilling, E Arzt, M J Perone, and U Renner

Curcumin (diferuloylmethane) is the active ingredient of the spice plant Curcuma longa and has been shown to act anti-tumorigenic in different types of tumours. Therefore, we have studied its effect in pituitary tumour cell lines and adenomas. Proliferation of lactosomatotroph GH3 and somatotroph MtT/S rat pituitary cells as well as of corticotroph AtT20 mouse pituitary cells was inhibited by curcumin in monolayer cell culture and in colony formation assay in soft agar. Fluorescence-activated cell sorting (FACS) analysis demonstrated curcumin-induced cell cycle arrest at G2/M. Analysis of cell cycle proteins by immunoblotting showed reduction in cyclin D1, cyclin-dependent kinase 4 and no change in p27kip. FACS analysis with Annexin V-FITC/7-aminoactinomycin D staining demonstrated curcumin-induced early apoptosis after 3, 6, 12 and 24 h treatment and nearly no necrosis. Induction of DNA fragmentation, reduction of Bcl-2 and enhancement of cleaved caspase-3 further confirmed induction of apoptosis by curcumin. Growth of GH3 tumours in athymic nude mice was suppressed by curcumin in vivo. In endocrine pituitary tumour cell lines, GH, ACTH and prolactin production were inhibited by curcumin. Studies in 25 human pituitary adenoma cell cultures have confirmed the anti-tumorigenic and hormone-suppressive effects of curcumin. Altogether, the results described in this report suggest this natural compound as a good candidate for therapeutic use on pituitary tumours.

Free access

V V Vax, M Gueorguiev, I I Dedov, A B Grossman, and M Korbonits

The oncogenes and/or tumour suppressor genes which may be involved in the transformation process for the vast majority of pituitary tumours remain unknown. There is substantial evidence for derangement of cell cycle control in such tumours, but cell cycle protein mutations identified in other human malignancies are restricted to only a very small subset of sporadic pituitary neoplasms. Krüppel-like factors are DNA-binding transcriptional regulators with diverse effects including the upregulation of the cell cycle protein p21(WAF1/CIP1). It has been reported that the Krüppel-like transcription factor 6 (KLF6) gene is mutated in a proportion (15-55%) of human prostate cancers, and more recent data are emerging regarding mutated KLF6 in nasopharyngeal carcinomas, astrocytoid gliomas and colorectal cancer. We therefore speculated that other tumours such as pituitary adenomas might also harbour such mutations that may be involved in the control of cell proliferation in the pituitary. The aim of the current study was thus to analyse the KLF6 gene for mutations in sporadic pituitary tumours. We analysed 60 pituitary adenomas (15 GH-, four ACTH-, two PRL-secreting and 39 non-functioning) with direct sequence analysis of exons 2 and 3 of the KLF6 gene, the region where most of the previously described mutations are located. Three non-functioning pituitary adenomas of the 60 pituitary tumours (5%) had two identical sequence changes in exon 2 (missense mutation Val165Met, 523G-->A and a silent substitution in Ser77Ser codon 261C-->T). Analysis of genomic DNA extracted from peripheral lymphocytes in one patient confirmed these changes to be present in the germline and they therefore probably represent polymorphisms, although we cannot exclude the possibility that these are predisposing germline mutations. We conclude that mutations of the KLF6 gene are unlikely to play an important role in sporadic pituitary tumorigenesis.

Free access

D Dworakowska, E Wlodek, C A Leontiou, S Igreja, M Cakir, M Teng, N Prodromou, M I Góth, S Grozinsky-Glasberg, M Gueorguiev, B Kola, M Korbonits, and A B Grossman

Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours.

Free access

M Seki, K Nomura, D Hirohara, M Kanazawa, T Sawada, K Takasaki, and H Demura

A 58-year-old man had adrenocortical carcinoma in the right adrenal gland. The tumour secreted excessive cortisol and dehydroepiandrosterone-sulphate (DHEA-S), and had invaded the right hepatic lobe and vena cava. Eleven months after surgical tumour resection, the serum DHEA-S levels again increased. Local tumour recurrence and a metastasis was found in the lung. Eleven months after surgery chemotherapy with mitotane (o,p'-DDD) was initiated. Twelve weeks of mitotane reduced serum DHEA-S levels and caused these tumours to disappear. The patient was then treated with low-dose mitotane (1.5-2.0 g/day) for 2 years. Serum levels of mitotane remained at less than 10 microg/ml. Although such low serum levels of mitotane and delayed initiation of mitotane after surgery have been proposed to weaken the antineoplastic effect of mitotane, the patient had a remission for 2 years. However, there was then local re-recurrence with an increase in serum DHEA-S and death 4 months later. The histological features of neoplastic cells were quite different comparing tumour resected at surgery and tumour at autopsy. The latter had more frequent mitotic nuclei. This tumour was initially sensitive to mitotane, but later became insensitive.

Free access

Sara Jung, Zoltan Nagy, Martin Fassnacht, Gerard Zambetti, Max Weiss, Martin Reincke, Peter Igaz, Felix Beuschlein, and Constanze Hantel

Systemic therapy of adrenocortical carcinoma (ACC) is limited by heterogeneous tumor response and adverse effects. Recently, we demonstrated anti-tumor activity of LEDP-M (etoposide, liposomal doxorubicin, liposomal cisplatin, mitotane), a liposomal variant of EDP-M (etoposide, doxorubicin, cisplatin, mitotane). To improve the therapeutic efficacy and off-target profiles of the clinical gold standard EDP-M, we investigated liposomal EDP-M regimens in different preclinical settings and in a small number of ACC patients with very advanced disease. Short- and long-term experiments were performed on two ACC models (SW-13 and SJ-ACC3) in vivo. We evaluated the anti-tumoral effects and off-target profiles of EDP-M, LEDP-M and a novel regimen L(l)EDP-M including liposomal etoposide. Furthermore, the role of plasma microRNA-210 as a therapeutic biomarker and first clinical data were assessed. Classical and liposomal protocols revealed anti-proliferative efficacy against SW-13 (EDP-M P < 0.01; LEDP-M: P < 0.001; L(l)EDP-M: P < 0.001 vs controls), whereas in SJ-ACC3, only EDP-M (P < 0.05 vs controls) was slightly effective. Long-term experiments in SW-13 demonstrated anti-tumor efficacy for all treatment schemes (EDP-M: P < 0.01, LEDP-M: P < 0.05, L(l)EDP-M P < 0.001 vs controls). The analysis of pre-defined criteria leading to study termination revealed significant differences for control (P < 0.0001) and EDP-M (P = 0.003) compared to L(l)EDP-M treatment. Raising its potential for therapy monitoring, we detected elevated levels of circulating microRNA-210 in SW-13 after LEDP-M treatment (P < 0.05). In contrast, no comparable effects were detectable for SJ-ACC3. However, overall histological evaluation demonstrated improved off-target profiles following liposomal regimens. The first clinical data indicate improved tolerability of liposomal EDP-M, thus confirming our results. In summary, liposomal EDP-M regimens represent promising treatment options to improve clinical treatment of ACC.

Free access

Anand Pathak, Douglas R Stewart, Fabio R Faucz, Paraskevi Xekouki, Sara Bass, Aurelie Vogt, Xijun Zhang, Joseph Boland, Meredith Yeager, Jennifer T Loud, Katherine L Nathanson, Katherine A McGlynn, Constantine A Stratakis, Mark H Greene, and Lisa Mirabello

Germline inactivating mutations of isoform 4 of phosphodiesterase (PDE) 11A (coded by the PDE11A gene) have been associated with familial adrenocortical tumors and familial testicular cancer. Testicular tissue is unique in expressing all four isoforms of PDE11A. In a prior candidate gene study of 94 familial testicular germ cell tumor (TGCT) subjects, we identified a significant association between the presence of functionally abnormal variants in PDE11A and familial TGCT risk. To validate this novel observation, we sequenced the PDE11A coding region in 259 additional TGCT patients (both familial and sporadic) and 363 controls. We identified 55 PDE11A variants: 20 missense, four splice-site, two nonsense, seven synonymous, and 22 intronic. Ten missense variants were novel; nine occurred in transcript variant 4 and one in transcript variant 3. Five rare mutations (p.F258Y, p.G291R, p.V820M, p.R545X, and p.K568R) were present only in cases and were significantly more common in cases vs controls (P=0.0037). The latter two novel variants were functionally characterized and shown to be functionally inactivating, resulting in reduced PDE activity and increased cAMP levels. In further analysis of this cohort, we focused on white participants only to minimize confounding due to population stratification. This study builds upon our prior reports implicating PDE11A variants in familial TGCT, provides the first independent validation of those findings, extends that work to sporadic testicular cancer, demonstrates that these variants are uncommonly but reproducibly associated with TGCT, and refines our understanding regarding which specific inactivating PDE11A variants are most likely to be associated with TGCT risk.

Free access

S G Creemers, P M van Koetsveld, F J van Kemenade, T G Papathomas, G J H Franssen, F Dogan, E M W Eekhoff, P van der Valk, W W de Herder, J A M J L Janssen, R A Feelders, and L J Hofland

Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. Discrimination of ACCs from adrenocortical adenomas (ACAs) is challenging on both imaging and histopathological grounds. High IGF2 expression is associated with malignancy, but shows large variability. In this study, we investigate whether specific methylation patterns of IGF2 regulatory regions could serve as a valuable biomarker in distinguishing ACCs from ACAs. Pyrosequencing was used to analyse methylation percentages in DMR0, DMR2, imprinting control region (ICR) (consisting of CTCF3 and CTCF6) and the H19 promoter. Expression of IGF2 and H19 mRNA was assessed by real-time quantitative PCR. Analyses were performed in 24 ACCs, 14 ACAs and 11 normal adrenals. Using receiver operating characteristic (ROC) analysis, we evaluated which regions showed the best predictive value for diagnosis of ACC and determined the diagnostic accuracy of these regions. In ACCs, the DMR0, CTCF3, CTCF6 and the H19 promoter were positively correlated with IGF2 mRNA expression (P<0.05). Methylation in the most discriminating regions distinguished ACCs from ACAs with a sensitivity of 96%, specificity of 100% and an area under the curve (AUC) of 0.997±0.005. Our findings were validated in an independent cohort of 9 ACCs and 13 ACAs, resulting in a sensitivity of 89% and a specificity of 92%. Thus, methylation patterns of IGF2 regulatory regions can discriminate ACCs from ACAs with high diagnostic accuracy. This proposed test may become the first objective diagnostic tool to assess malignancy in adrenal tumours and facilitate the choice of therapeutic strategies in this group of patients.

Free access

L Cerquetti, B Bucci, R Marchese, S Misiti, U De Paula, R Miceli, A Muleti, D Amendola, P Piergrossi, E Brunetti, V Toscano, and A Stigliano

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p′-DDD) is an agent with adrenotoxic effect, which is able to block cortisol synthesis. This drug and radiotherapy are used also in adrenal cancer treatment even if their biological action in this neoplasia remains unknown. We investigated the effects of o,p′-DDD and ionizing radiations (IR) on cell growth inhibition and cell cycle perturbation in H295R and SW13 adrenocortical cancer cells. Both cell lines were irradiated at a 6 Gy dose and were treated with o,p′-DDD 10−5 M separately and with IR/o,p′-DDD in combination. This combination treatment induced an irreversible inhibition of cell growth in both adrenocortical cancer cells. Cell cycle analysis showed that IR alone and IR/o,p′-DDD in combination induced the cell accumulation in the G2 phase. At 120 h after IR, the cells were able to recover the IR-induced G2 block while cells treated with IR/o,p′-DDD were still arrested in G2 phase. In order to study the molecular mechanism involved in the G2 irreversible arrest, we have considered the H295R cell line showing the highest inhibition of cell proliferation associated with a noteworthy G2 arrest. In these cells, cyclin B1 and Cdk2 proteins were examined by western blot and Cdk2 kinase activity measured by assay kit. The H295R cells treated with IR/o,p′-DDD shared an increase in cyclin B1 amount as the coimmunoprecipitation of Cdc2–cyclin B1 complex. The kinase activity also shows an increase in the treated cells with combination therapy. Moreover, in these cells, sequence analysis of p53 revealed a large deletion of exons 8 and 9. The same irreversible block on G2 phase, induced by IR/o,p′-DDD treatment, happened in H295R cells with restored wild-type p53 suggesting that this mechanism is not mediated by p53 pathway.