Search Results

You are looking at 41 - 50 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Maria Cristina De Martino, Peter M van Koetsveld, Richard A Feelders, Diana Sprij-Mooij, Marlijn Waaijers, Steven W J Lamberts, Wouter W de Herder, Annamaria Colao, Rosario Pivonello, and Leo J Hofland

Patients with adrenocortical carcinoma (ACC) need new treatment options. The aim of this study was to evaluate the effects of the mTOR inhibitors sirolimus and temsirolimus on human ACC cell growth and cortisol production. In H295, HAC15, and SW13 cells, we have evaluated mTOR, IGF2, and IGF1 receptor expressions; the effects of sirolimus and temsirolimus on cell growth; and the effects of sirolimus on apoptosis, cell cycle, and cortisol production. Moreover, the effects of sirolimus on basal and IGF2-stimulated H295 cell colony growth and on basal and IGF1-stimulated phospho-AKT, phospho-S6K1, and phospho-ERK in H295 and SW13 were studied. Finally, we have evaluated the effects of combination treatment of sirolimus with an IGF2-neutralizing antibody. We have found that H295 and HAC15 expressed IGF2 at a >1800-fold higher level than SW13. mTOR inhibitors suppressed cell growth in a dose-/time-dependent manner in all cell lines. SW13 were the most sensitive to these effects. Sirolimus inhibited H295 colony surviving fraction and size. These effects were not antagonized by IGF2, suggesting the involvement of other autocrine regulators of mTOR pathways. In H295, sirolimus activated escape pathways. The blocking of endogenously produced IGF2 increased the antiproliferative effects of sirolimus on H295. Cortisol production by H295 and HAC15 was inhibited by sirolimus. The current study demonstrates that mTOR inhibitors inhibit the proliferation and cortisol production in ACC cells. Different ACC cells have different sensitivity to the mTOR inhibitors. mTOR could be a target for the treatment of human ACCs, but variable responses might be expected. In selected cases of ACC, the combined targeting of mTOR and IGF2 could have greater effects than mTOR inhibitors alone.

Free access

Thomas G Papathomas, Lindsey Oudijk, Ellen C Zwarthoff, Edward Post, Floor A Duijkers, Max M van Noesel, Leo J Hofland, Patrick J Pollard, Eamonn R Maher, David F Restuccia, Richard A Feelders, Gaston J H Franssen, Henri J Timmers, Stefan Sleijfer, Wouter W de Herder, Ronald R de Krijger, Winand N M Dinjens, and Esther Korpershoek

Hotspot mutations in the promoter of the telomerase reverse transcriptase (TERT) gene have been recently reported in human cancers and proposed as a novel mechanism of telomerase activation. To explore TERT promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia, a set of 253 tumors (38 adrenocortical carcinomas (ACCs), 127 pheochromocytomas (PCCs), 18 extra-adrenal paragangliomas (ea PGLs), 37 head and neck PGLs (HN PGLs), and 33 peripheral neuroblastic tumors) was selected along with 16 human neuroblastoma (NBL) and two ACC cell lines to assess TERT promoter mutations by the Sanger sequencing method. All mutations detected were confirmed by a SNaPshot assay. Additionally, 36 gastrointestinal stromal tumors (GISTs) were added to explore an association between TERT promoter mutations and SDH deficiency. TERT promoter mutations were found in seven out of 289 tumors and in three out of 18 human cell lines; four C228T mutations in 38 ACCs (10.5%), two C228T mutations in 18 ea PGLs (11.1%), one C250T mutation in 36 GISTs (2.8%), and three C228T mutations in 16 human NBL cell lines (18.75%). No mutation was detected in PCCs, HN PGLs, neuroblastic tumors as well as ACC cell lines. TERT promoter mutations preferentially occurred in a SDH-deficient setting (P=0.01) being present in three out of 47 (6.4%) SDH-deficient tumors vs zero out of 171 (0%) SDH-intact tumors. We conclude that TERT promoter mutations occur in ACCs and ea PGLs. In addition, preliminary evidence indicates a potential association with the acquisition of TERT promoter mutations in SDH-deficient tumors.

Free access

Brian Harding, Manuel C Lemos, Anita A C Reed, Gerard V Walls, Jeshmi Jeyabalan, Michael R Bowl, Hilda Tateossian, Nicky Sullivan, Tertius Hough, William D Fraser, Olaf Ansorge, Michael T Cheeseman, and Rajesh V Thakker

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized in man by parathyroid, pancreatic, pituitary and adrenal tumours. The MEN1 gene encodes a 610-amino acid protein (menin) which is a tumour suppressor. To investigate the in vivo role of menin, we developed a mouse model, by deleting Men1 exons 1 and 2 and investigated this for MEN1-associated tumours and serum abnormalities. Men1 +/− mice were viable and fertile, and 220 Men1 +/− and 94 Men1 +/+ mice were studied between the ages of 3 and 21 months. Survival in Men1 +/− mice was significantly lower than in Men1 +/+ mice (<68% vs >85%, P<0.01). Men1 +/− mice developed, by 9 months of age, parathyroid hyperplasia, pancreatic tumours which were mostly insulinomas, by 12 months of age, pituitary tumours which were mostly prolactinomas, and by 15 months parathyroid adenomas and adrenal cortical tumours. Loss of heterozygosity and menin expression was demonstrated in the tumours, consistent with a tumour suppressor role for the Men1 gene. Men1 +/− mice with parathyroid neoplasms were hypercalcaemic and hypophosphataemic, with inappropriately normal serum parathyroid hormone concentrations. Pancreatic and pituitary tumours expressed chromogranin A (CgA), somatostatin receptor type 2 and vascular endothelial growth factor-A. Serum CgA concentrations in Men1 +/− mice were not elevated. Adrenocortical tumours, which immunostained for 3-β-hydroxysteroid dehydrogenase, developed in seven Men1 +/− mice, but resulted in hypercorticosteronaemia in one out of the four mice that were investigated. Thus, these Men1 +/− mice are representative of MEN1 in man, and will help in investigating molecular mechanisms and treatments for endocrine tumours.

Free access

Debbie L Hay, Christopher S Walker, and David R Poyner

Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the ‘ADMR’), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

Free access

Pasqualino Malandrino, Abir Al Ghuzlan, Marine Castaing, Jacques Young, Bernard Caillou, Jean-Paul Travagli, Dominique Elias, Thierry de Baere, Clarisse Dromain, Angelo Paci, Philippe Chanson, Martin Schlumberger, Sophie Leboulleux, and Eric Baudin

To progress in the stratification of the first-line therapeutic management of metastatic adrenocortical carcinoma (ACC), we searched for prognostic parameters of survival in patients treated with combined mitotane- and cisplatinum-based chemotherapy as first-line. We retrospectively studied prospectively collected parameters from 131 consecutive patients with metastatic ACC (44 with a tissue specimen available) treated at the Gustave Roussy Institute with mitotane- and platinum-based chemotherapy. Fifty-five patients with clinical, pathological, and morphological data available together with treatment characteristics including detailed follow-up were enrolled. Plasma mitotane levels and ERCC1 protein staining were analyzed. Response was analyzed according to RECIST criteria as well as overall survival (OS) from the start of cisplatinum-based chemotherapy. Parameters impacting on OS were evaluated by univariate analysis, and then analyzed by multivariate analysis. Using a landmark method, OS according to response to chemotherapy was analyzed. Objective response to combined mitotane- and cisplatinum-based chemotherapy was 27.3%. Median OS was 1 year. In the univariate analysis, resection of the primary, time since diagnosis, mitotane monotherapy as single first-line treatment, number of affected organs, plasma mitotane above 14 mg/l, and objective response were predictors of survival. In the multivariate analysis, mitotane level ≥14 mg/l and objective response to platinum-based chemotherapy were found to be independent predictors of survival (P=0.03 and <0.001). Our study suggests a prognostic role for mitotane therapy and objective response to platinum-based chemotherapy.

Free access

Erwan Thouënnon, Alice Pierre, Yannick Tanguy, Johann Guillemot, Destiny-Love Manecka, Marlène Guérin, L'houcine Ouafik, Mihaela Muresan, Marc Klein, Jérôme Bertherat, Hervé Lefebvre, Pierre-François Plouin, Laurent Yon, and Youssef Anouar

Pheochromocytomas are catecholamine-producing tumors which are generally benign, but which can also present as or develop into malignancy. Molecular pathways of malignant transformation remain poorly understood. Pheochromocytomas express various trophic peptides which may influence tumoral cell behavior. Here, we investigated the expression of trophic amidated peptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), and adrenomedullin (AM), and their receptors in benign and malignant pheochromocytomas in order to assess their potential role in chromaffin cell tumorigenesis and malignant transformation. PACAP, NPY, and AM are expressed in the majority of pheochromocytomas studied; NPY exhibiting the highest mRNA levels relative to reference genes. Although median gene expression or peptide levels were systematically lower in malignant compared to benign tumors, no statistically significant difference was found. Among all the receptors of these peptides that were analyzed, only the AM receptor RDC1 displayed a differential expression between benign and malignant pheochromocytomas. This receptor exhibited a fourfold higher expression in malignant than in benign tumors. AM and stromal cell-derived factor 1, which has also been described as a ligand for RDC1, increased the number of human pheochromocytoma cells in primary culture and exerted anti-apoptotic activity on rat pheochromocytoma PC12 cells. In addition, RDC1 gene silencing decreased the number of viable PC12 cells. This study shows the expression of several trophic peptides and their receptors in benign and malignant pheochromocytomas, and suggests that AM and its RDC1 receptor could be involved in chromaffin cell tumorigenesis through pro-survival effects. Therefore, AM and RDC1 may represent valuable targets for the treatment of malignant pheochromocytomas.

Free access

Lucas Leite Cunha, Marjory Alana Marcello, Vinicius Rocha-Santos, and Laura Sterian Ward

Immune checkpoint inhibitors are agents that act by inhibiting the mechanisms of immune escape displayed by various cancers. The success of immune checkpoint inhibitors against several tumors has promoted a new treatment strategy in clinical oncology, and this has encouraged physicians to increase the number of patients who receive the immune checkpoint therapy. In the present article, we review the main concepts regarding immune checkpoint mechanisms and how cancer disrupts them to undergo immune escape. In addition, we describe the most essential concepts related to immune checkpoint inhibitors. We critically review the literature on preclinical and clinical studies of the immune checkpoint inhibitors as a treatment option for thyroid cancer, ovarian carcinoma, pancreatic adenocarcinoma, adrenocortical carcinoma and neuroendocrine tumors. We present the challenges and the opportunities of using immune checkpoint inhibitors against these endocrine malignancies, highlighting the breakthroughs and pitfalls that have recently emerged.

Free access

Barbara Mariniello, Antonio Rosato, Gaia Zuccolotto, Beatrice Rubin, Maria Verena Cicala, Isabella Finco, Maurizio Iacobone, Anna Chiara Frigo, Ambrogio Fassina, Raffaele Pezzani, and Franco Mantero

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1–2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1–2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.

Free access

Fulvia Daffara, Silvia De Francia, Giuseppe Reimondo, Barbara Zaggia, Emiliano Aroasio, Francesco Porpiglia, Marco Volante, Angela Termine, Francesco Di Carlo, Luigi Dogliotti, Alberto Angeli, Alfredo Berruti, and Massimo Terzolo

Toxicity of adjuvant mitotane treatment is poorly known; thus, our aim was to assess prospectively the unwanted effects of adjuvant mitotane treatment and correlate the findings with mitotane concentrations. Seventeen consecutive patients who were treated with mitotane after radical resection of adrenocortical cancer (ACC) from 1999 to 2005 underwent physical examination, routine laboratory evaluation, monitoring of mitotane concentrations, and a hormonal work-up at baseline and every 3 months till ACC relapse or study end (December 2007). Mitotane toxicity was graded using NCI CTCAE criteria. All biochemical measurements were performed at our center and plasma mitotane was measured by an in-house HPLC assay. All the patients reached mitotane concentrations >14 mg/l and none of them discontinued definitively mitotane for toxicity; 14 patients maintained consistently elevated mitotane concentrations despite tapering of the drug. Side effects occurred in all patients but were manageable with palliative treatment and adjustment of hormone replacement therapy. Mitotane affected adrenal steroidogenesis with a more remarkable inhibition of cortisol and DHEAS than aldosterone. Mitotane induced either perturbation of thyroid function mimicking central hypothyroidism or, in male patients, inhibition of testosterone secretion. The discrepancy between salivary and serum cortisol, as well as between total and free testosterone, is due to the mitotane-induced increase in hormone-binding proteins which complicates interpretation of hormone measurements. A low-dose monitored regimen of mitotane is tolerable and able to maintain elevated drug concentrations in the long term. Mitotane exerts a complex effect on the endocrine system that may require multiple hormone replacement therapy.

Free access

Bruno Ragazzon, Guillaume Assié, and Jérôme Bertherat

Transcriptome analysis has been successfully used to study the gene profile expression of adrenocortical tumors (ACT) for 7 years. The various studies reported to date have produced an abundance of new information on adrenocortical cancer (ACC), underlying the validity of this approach to study the molecular genetics and pathogenesis of these tumors. The gene expression profile of ACC clearly differs from that of benign adrenocortical adenomas (ACA). Interestingly, transcriptome analysis has the ability to establish a subclassification of ACC based on the gene expression profile. In particular, it is able to identify two groups of tumors with different outcomes (i.e. good prognosis and poor prognosis). This approach has been used to develop molecular markers for ACC diagnosis and prognostication. An IGF2 cluster of genes up-regulated in ACC has been identified. Transcriptome analysis has shown that, in comparison with ACA, IGF2 is indeed the gene most overexpressed in ACC. By contrast, genes associated with steroidogenesis are down-regulated in ACC. Genes controlling the cell cycle are dysregulated in ACC, and several are dramatically overexpressed. Analysis regarding the level of expression of Wnt/β-catenin and p53 signaling has shown alterations, in keeping with the known molecular somatic genetic defects of these pathways that are observed in ACC. This review summarizes the main findings of studies reporting ACC transcriptome analysis, demonstrating its power for ACT classification, and examines the resulting progress in understanding the pathogenesis of ACC. The potential for both ACC diagnosis and the identification of new therapeutic targets will be discussed.