Search Results

You are looking at 61 - 70 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Lucas Leite Cunha, Marjory Alana Marcello, Vinicius Rocha-Santos, and Laura Sterian Ward

Immune checkpoint inhibitors are agents that act by inhibiting the mechanisms of immune escape displayed by various cancers. The success of immune checkpoint inhibitors against several tumors has promoted a new treatment strategy in clinical oncology, and this has encouraged physicians to increase the number of patients who receive the immune checkpoint therapy. In the present article, we review the main concepts regarding immune checkpoint mechanisms and how cancer disrupts them to undergo immune escape. In addition, we describe the most essential concepts related to immune checkpoint inhibitors. We critically review the literature on preclinical and clinical studies of the immune checkpoint inhibitors as a treatment option for thyroid cancer, ovarian carcinoma, pancreatic adenocarcinoma, adrenocortical carcinoma and neuroendocrine tumors. We present the challenges and the opportunities of using immune checkpoint inhibitors against these endocrine malignancies, highlighting the breakthroughs and pitfalls that have recently emerged.

Free access

A R Glover, J T Zhao, J C Ip, J C Lee, B G Robinson, A J Gill, P S H Soon, and S B Sidhu

Adrenocortical carcinoma (ACC) is an aggressive malignancy with high rates of recurrence following surgical resection. Long noncoding RNAs (lncRNAs) play an important role in cancer development. Pathogenesis of adrenal tumours have been characterised by mRNA, microRNA and methylation expression signatures, but it is unknown if this extends to lncRNAs. This study describes lncRNA expression signatures in ACC, adrenal cortical adenoma (ACA) and normal adrenal cortex (NAC) and presents lncRNAs associated with ACC recurrence to identify novel prognostic and therapeutic targets. RNA was extracted from freshly frozen tissue with confirmation of diagnosis by histopathology. Focused lncRNA and mRNA transcriptome analysis was performed using the ArrayStar Human LncRNA V3.0 microarray. Differentially expressed lncRNAs were validated using quantitative reverse transcriptase-PCR and correlated with clinical outcomes. Microarray of 21 samples (ten ACCs, five ACAs and six NACs) showed distinct patterns of lncRNA expression between each group. A total of 956 lncRNAs were differentially expressed between ACC and NAC, including known carcinogenesis-related lncRNAs such as H19, GAS5, MALAT1 and PRINS (P≤0.05); 85 lncRNAs were differentially expressed between ACC and ACA (P≤0.05). Hierarchical clustering and heat mapping showed ACC samples correctly grouped compared with NAC and ACA. Sixty-six differentially expressed lncRNAs were found to be associated with ACC recurrence (P≤0.05), one of which, PRINS, was validated in a group of 20 ACCs and also found to be associated with metastatic disease on presentation. The pathogenesis of adrenal tumours extends to lncRNA dysregulation and low expression of the lncRNA PRINS is associated with ACC recurrence.

Free access

Nunki Hassan, Jing Ting Zhao, Anthony Glover, Bruce G Robinson, and Stan B Sidhu

Adrenocortical carcinoma (ACC) has high recurrence rates and poor prognosis with limited response to conventional cancer therapy. Recent contributions of high-throughput transcriptomic profiling identified microRNA-497 (miR-497) as significantly underexpressed, while lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) as overexpressed in ACC. miR-497 is located in the chromosomal region 17p13.1, in which there is a high frequency of loss of heterozygosity in ACC. We aim to investigate the interaction of miR-497 and MALAT1 in ACC and its functional roles in the process of tumourigenesis. In this study, we demonstrated miR-497 post-transcriptionally repressed MALAT1 while MALAT1 also competes for miR-497 binding to its molecular target, EIF4E (eukaryotic translation initiation factor 4E). We showed that overexpression of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell cycle arrest through downregulation of EIF4E expression. Furthermore, MALAT1 directly binds to SFPQ (splicing factor proline and glutamine rich) protein, indicating its multifaceted roles in ACC pathophysiology. This is the first study to identify the feedback axis of miR-497-MALAT1/EIF4E in ACC tumourigenesis, providing novel insights into the molecular functions of noncoding RNAs in ACC.

Free access

Michaela Luconi, Monica Mangoni, Stefania Gelmini, Giada Poli, Gabriella Nesi, Michela Francalanci, Nicola Pratesi, Giulia Cantini, Adriana Lombardi, Monica Pepi, Tonino Ercolino, Mario Serio, Claudio Orlando, and Massimo Mannelli

Adrenocortical carcinoma (ACC) is a rare aggressive tumor with a poor prognosis. The lack of a specific and effective medical treatment is due to the poor knowledge of the mechanisms underlying tumor growth. Research on potential drugs able to specifically interfere with tumor proliferation is essential to develop more efficacious therapies. We evaluated for the first time the in vivo effect of rosiglitazone (RGZ), an anti-diabetic drug with in vitro anti-tumor properties, on ACC proliferation in a xenograft model obtained by s.c. injection of human ACC H295R cells in athymic mice. When the tumor size reached 5 mm, animals were allocated to 5 mg/kg RGZ- or water-treated groups. Tumor volume was measured twice a week. A significant reduction of tumor growth in RGZ versus control (control) group was observed and was already maximal following 17 day treatment (1−T/C=75.4% (43.7–93.8%)). After 31 days of treatment, mice were killed and tumor analyzed. Tumor histological evaluation revealed characteristics of invasiveness, richness in small vessels and mitotic figures in control group, while RGZ group tumors presented non infiltrating borders, few vessels, and many apoptotic bodies. Tumor immunohistochemistry showed that Ki-67 was reduced in RGZ versus control group. Quantitative real-time RT-PCR demonstrated a significant reduction in the expression of angiogenic (VEGF), vascular (CD31), proliferation (BMI-1), and anti-apoptotic (Bcl-2) genes in RGZ versus control group tumors. The same inhibitory effects were confirmed in in vitro RGZ-treated H295R. Our findings support and expand the role of RGZ in controlling ACC proliferation and angiogenesis in vivo and in vitro.

Open access

Roland Pfoh, Ira Kay Lacdao, and Vivian Saridakis

Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure–function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.

Free access

Giada Poli, Daniele Guasti, Elena Rapizzi, Rossella Fucci, Letizia Canu, Alessandra Bandinelli, Nicoletta Cini, Daniele Bani, Massimo Mannelli, and Michaela Luconi

At present, mitotane (MTT) represents the first-line pharmacological approach for the treatment of advanced adrenocortical carcinoma (ACC). Despite clear evidence that the drug can reduce the clinical signs of steroid excess in secreting ACC, the mechanism mediating the possible toxic effect of MTT on tumor cells still remains obscure. This study investigated the intracellular events underlying the toxic effect of MTT by studying qualitative and quantitative alterations in mitochondrial morphology and functions in human adrenocortical cancer cell lines, H295R and SW13. Increasing concentrations of MTT resulted in rapid intracellular accumulation and conversion of the drug. Cytostatic and cytotoxic effects were evident at doses corresponding to the therapeutic window (30–50 μM) through an apoptotic mechanism involving caspase 3/7. Electron microscopic analysis of cell mitochondria displayed MTT-induced dose- and time-dependent alterations in the morphology of the organelle. These alterations were characterized by a marked swelling and a decrease in the number of respiratory cristae, accompanied by a significant depolarization of the mitochondrial membrane potential, finally leading to the disruption of the organelle. A drastic reduction of oxygen consumption was observed due to mitochondrial membrane damage, which was accompanied by a decrease in the levels of VDAC1 integral membrane channel. These findings contribute to better understand the intracellular mechanism of action of MTT in ACC cells, showing that its cytotoxic effect seems to be mainly mediated by an apoptotic process activated by the disruption of mitochondria.

Free access

Vassiliki Kotoula, Elias Sozopoulos, Helen Litsiou, Galinos Fanourakis, Triantafyllia Koletsa, Gerassimos Voutsinas, Sophia Tseleni-Balafouta, Constantine S Mitsiades, Axel Wellmann, and Nicholas Mitsiades

The serine/threonine kinase B-Raf plays a key role in the Ras/Raf/MEK/ERK pathway that relays extracellular signals for cell proliferation and survival. Several types of human malignancies harbor activating BRAF mutations, most frequently a V600E substitution. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase (TK) receptor that mediates proliferation and survival signaling, is expressed in a wide variety of normal and neoplastic tissues. EGFR inhibitors have produced objective responses in patients with non-small cell lung carcinomas harboring activating EGFR TK domain somatic mutations. We evaluated the presence of mutations in BRAF (exons 11 and 15), KRAS (exons 1 and 2), NRAS (exons 1 and 2), and EGFR (exons 18–21) in adrenal carcinomas (35 tumor specimens and two cell lines) by DNA sequencing. BRAF mutations were found in two carcinomas (5.7%). Four carcinomas (11.4%) carried EGFR TK domain mutations. One specimen carried a KRAS mutation, and another carried two NRAS mutations. No mutations were found in the two adrenocortical cell lines. BRAF- and EGFR-mutant tumor specimens exhibited stronger immunostaining for the phosphorylated forms of the MEK and ERK kinases than their wild-type counterparts. EGFR-mutant carcinomas exhibited increased phosphorylation of EGFR (Tyr 992) compared with wild-type carcinomas. We conclude that BRAF, RAS, and EGFR mutations occur in a subset of human adrenocortical carcinomas. Inhibitors of the Ras/Raf/MEK/ERK and EGFR pathways represent candidate targeted therapies for future clinical trials in carefully selected patients with adrenocortical carcinomas harboring respective activating mutations.

Free access

B Wängberg, A Khorram-Manesh, S Jansson, B Nilsson, O Nilsson, C E Jakobsson, S Lindstedt, A Odén, and H Ahlman

Adrenocortical carcinoma (ACC) is a rare tumour disease with sinister prognosis also after attempts to radical surgery; better prognosis is seen for low-stage tumours. Adjuvant treatment with the adrenolytic drug mitotane has been attempted, but not proven to prevent from recurrence. The drug may offer survival advantage in case of recurrence. The aim of this single-centre study (1979–2007) of 43 consecutive patients was to evaluate the long-term survival after active surgical treatment combined with monitored mitotane (to reduce side effects of the drug). The series is unique, since all patients were offered a period of mitotane as adjuvant or palliative treatment; six patients refused mitotane. Despite a high proportion of high-stage tumours (67%), the complete resection rate was high (77%). The disease-specific 5-year survival was high (64.1%); very high for patients with low-stage tumours without evident relation to mitotane levels. Patients with high-stage tumours had a clear survival advantage with mitotane levels above a threshold of 14 mg/l in serum. The hazard ratio for patients with high mitotane levels versus all patients indicates a significant effect of the drug. The results indicate that adjuvant mitotane may be the standard of care for patients with high-stage ACC after complete resection.

Free access

Fidéline Bonnet-Serrano and Jérôme Bertherat

This review describes the molecular alterations observed in the various types of tumors of the adrenal cortex, excluding Conn adenomas, especially the alterations identified by genomic approaches these last five years. Two main forms of bilateral adrenocortical tumors can be distinguished according to size and aspect of the nodules: primary pigmented nodular adrenal disease (PPNAD), which can be sporadic or part of Carney complex and primary bilateral macro nodular adrenal hyperplasia (PBMAH). The bilateral nature of the tumors suggests the existence of an underlying genetic predisposition. PPNAD and Carney complex are mainly due to germline-inactivating mutations of PRKAR1A, coding for a regulatory subunit of PKA, whereas PBMAH genetic seems more complex. However, genome-wide approaches allowed the identification of a new tumor suppressor gene, ARMC5, whose germline alteration could be responsible for at least 25% of PBMAH cases. Unilateral adrenocortical tumors are more frequent, mostly adenomas. The Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by CTNNB1 mutations and by ZNRF3 inactivation in adrenal cancer (ACC). Some other signaling pathways are more specific of the tumor dignity. Thus, somatic mutations of cAMP/PKA pathway genes, mainly PRKACA, coding for the catalytic alpha-subunit of PKA, are found in cortisol-secreting adenomas, whereas IGF-II overexpression and alterations of p53 signaling pathway are observed in ACC. Genome-wide approaches including transcriptome, SNP, methylome and miRome analysis have identified new genetic and epigenetic alterations and the further clustering of ACC in subgroups associated with different prognosis, allowing the development of new prognosis markers.

Free access

Fulvia Daffara, Silvia De Francia, Giuseppe Reimondo, Barbara Zaggia, Emiliano Aroasio, Francesco Porpiglia, Marco Volante, Angela Termine, Francesco Di Carlo, Luigi Dogliotti, Alberto Angeli, Alfredo Berruti, and Massimo Terzolo

Toxicity of adjuvant mitotane treatment is poorly known; thus, our aim was to assess prospectively the unwanted effects of adjuvant mitotane treatment and correlate the findings with mitotane concentrations. Seventeen consecutive patients who were treated with mitotane after radical resection of adrenocortical cancer (ACC) from 1999 to 2005 underwent physical examination, routine laboratory evaluation, monitoring of mitotane concentrations, and a hormonal work-up at baseline and every 3 months till ACC relapse or study end (December 2007). Mitotane toxicity was graded using NCI CTCAE criteria. All biochemical measurements were performed at our center and plasma mitotane was measured by an in-house HPLC assay. All the patients reached mitotane concentrations >14 mg/l and none of them discontinued definitively mitotane for toxicity; 14 patients maintained consistently elevated mitotane concentrations despite tapering of the drug. Side effects occurred in all patients but were manageable with palliative treatment and adjustment of hormone replacement therapy. Mitotane affected adrenal steroidogenesis with a more remarkable inhibition of cortisol and DHEAS than aldosterone. Mitotane induced either perturbation of thyroid function mimicking central hypothyroidism or, in male patients, inhibition of testosterone secretion. The discrepancy between salivary and serum cortisol, as well as between total and free testosterone, is due to the mitotane-induced increase in hormone-binding proteins which complicates interpretation of hormone measurements. A low-dose monitored regimen of mitotane is tolerable and able to maintain elevated drug concentrations in the long term. Mitotane exerts a complex effect on the endocrine system that may require multiple hormone replacement therapy.