Search Results

You are looking at 71 - 80 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Susanna Vuorenoja, Bidut Prava Mohanty, Johanna Arola, Ilpo Huhtaniemi, Jorma Toppari, and Nafis A Rahman

Lytic peptide Hecate (23-amino acid (AA)) fused with a 15-AA fragment of human chorionic gonadotropin-β (CG-β), Hecate-CGβ conjugate (H-CGβ-c) selectively binds to and destroys tumor cells expressing LH/chorionic gonadotropin receptor (Lhcgr). Transgenic mice (6.5 month old) expressing SV40 T-antigen under the inhibin-α promoter (inhα/Tag) presenting with Lhcgr expressing adrenal tumors were treated either with H-CGβ-c, GnRH antagonist (GnRH-a), estradiol (E2; only females) or their combinations for 1 month. We expected that GnRH-a or E2 in combination with H-CGβ-c could improve the treatment efficacy especially in females by decreasing circulating LH and eliminating the potential competition of serum LH with the H-CGβ-c. GnRH-a and H-CGβ-c treatments were successful in males (adrenal weights 14±2.8 mg and 60±26 vs 237±59 mg in controls; P<0.05). Histopathologically, GnRH-a apparently destroyed the adrenal parenchyma leaving only the fibrotic capsule with few necrotic foci. In females, H-CGβ-c was totally ineffective, whereas GnRH-a (19±5 mg) or E2 (77±50 mg) significantly reduced the adrenal weights compared with controls (330±70 mg). Adrenal morphometry, cell proliferation markers, post-treatment suppression of serum progesterone, and quantitative RT-PCR of GATA-4, Lhcgr, and GATA-6 further supported the positive outcome. H-CGβ-c selectively killed the Lhcgr expressing tumor cells, whereas GnRH-a blocked tumor progression through gonadotropin suppression, emphasizing the gonadotropin dependency of these adrenocortical tumors. If extrapolated to humans, H-CGβ-c could be considered for the treatment of gonadotropin-dependent adrenal tumors in males, whereas in females gonadotropin suppression, but not H-CGβ-c, would work better.

Open access

Deniz M Özata, Stefano Caramuta, David Velázquez-Fernández, Pinar Akçakaya, Hong Xie, Anders Höög, Jan Zedenius, Martin Bäckdahl, Catharina Larsson, and Weng-Onn Lui

Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC.

Free access

A Karpathakis, H Dibra, and C Thirlwell

The field of epigenetics has evolved rapidly over recent years providing insight into the tumorigenesis of many solid and haematological malignancies. Determination of epigenetic modifications in neuroendocrine tumour (NET) development is imperative if we are to improve our understanding of the biology of this heterogenous group of tumours. Epigenetic marks such as DNA methylation at RASSF1A are frequent findings in NETs of all origins and may be associated with worse prognosis. MicroRNA signatures and histone modifications have been identified which can differentiate subtypes of NET and distinguish NET from adenocarcinoma in cases of diagnostic uncertainty. Historically, candidate gene-driven approaches have yielded limited insight into the epigenetics of NET. Recent progress has been facilitated by development of high-throughput tools including second-generation sequencing and arrays for analysis of the ‘epigenome’ of tumour and normal tissue, permitting unbiased approaches such as exome sequencing that identified mutations of chromatin-remodelling genes ATRX/DAXX in 44% of pancreatic NETs. Epigenetic changes are reversible and therefore represent an attractive therapeutic target; to date, clinical outcomes of epigenetic therapies in solid tumours have been disappointing; however, in vitro studies on NETs are promising and further clinical trials are required to determine utility of this class of novel agents. In this review, we perform a comprehensive evaluation of epigenetic changes found in NETs to date, including rare NETs such as phaeochromocytoma and adrenocortical tumours. We suggest priorities for future research and discuss potential clinical applications and novel therapies.

Free access

Katja Kiseljak-Vassiliades, Yu Zhang, Stacey M Bagby, Adwitiya Kar, Nikita Pozdeyev, Mei Xu, Katherine Gowan, Vibha Sharma, Christopher D Raeburn, Maria Albuja-Cruz, Kenneth L Jones, Lauren Fishbein, Rebecca E Schweppe, Hilary Somerset, Todd M Pitts, Stephen Leong, and Margaret E Wierman

Adrenocortical cancer (ACC) is an orphan malignancy that results in heterogeneous clinical phenotypes and molecular genotypes. There are no curative treatments for this deadly cancer with 35% survival at five years. Our understanding of the underlying pathobiology and our ability to test novel therapeutic targets has been limited due to the lack of preclinical models. Here, we report the establishment of two new ACC cell lines and corresponding patient-derived xenograft (PDX) models. CU-ACC1 cell line and PDX were derived from a perinephric metastasis in a patient whose primary tumor secreted aldosterone. CU-ACC2 cell line and PDX were derived from a liver metastasis in a patient with Lynch syndrome. Short tandem repeat profiling confirmed consistent matches between human samples and models. Both exomic and RNA sequencing profiling were performed on the patient samples and the models, and hormonal secretion was evaluated in the new cell lines. RNA sequencing and immunohistochemistry confirmed the expression of adrenal cortex markers in the PDXs and human tumors. The new cell lines replicate two of the known genetic models of ACC. CU-ACC1 cells had a mutation in CTNNB1 and secreted cortisol but not aldosterone. CU-ACC2 cells had a TP53 mutation and loss of MSH2 consistent with the patient’s known germline mutation causing Lynch syndrome. Both cell lines can be transfected and transduced with similar growth rates. These new preclinical models of ACC significantly advance the field by allowing investigation of underlying molecular mechanisms of ACC and the ability to test patient-specific therapeutic targets.

Free access

David J Gross, Gabriel Munter, Menachem Bitan, Tali Siegal, Alberto Gabizon, Ronny Weitzen, Ofer Merimsky, Aliza Ackerstein, Asher Salmon, Avishai Sella, and Shimon Slavin

Group-author : The Israel Glivec in Solid Tumors Study Group

Imatinib mesylate (IM), a small molecule that is a selective inhibitor of the ABL, platelet derived growth factor receptor (PDGFR-R) and stem cell ligand receptor (c-kit) tyrosine kinases (TK). IM was also found to inhibit the TK activity of BCR/ABL fusion protein produced in chronic myelogenous leukemia, with marked clinical activity against the disease. Since both PDGF-R and c-kit both having a putative role in tumorigenesis, we investigated the efficacy and safety of the use of IM in patients with endocrine tumors unresponsive to conventional therapies that expressed c-kit and/or PDGF-R (within the framework of a comprehensive phase II multi-center study of IM in patients with solid tumors). IM was initiated at a dose of 400 mg/day, with possible dose escalation within 1 week to 600 mg/day and an option to raise the dose to 800 mg/day in the event of progression and in the absence of safety concerns for a period of up to 12 months. Between September 2002 and July 2003, 15 adult patients with disseminated endocrine tumors were recruited as follows: medullary thyroid carcinoma (MTC, n = 6); adrenocortical carcinoma (ACC, n = 4); malignant pheochromocytoma (pheo, n = 2); carcinoid (non-secreting, n = 2), neuroendocrine tumor (NET, n = 1). No objective responses were observed. MTC – disease progression in 4 patients, and treatment discontinuation in 2 patients due to adverse events; ACC – disease progression in 3 patients, and treatment discontinuation in 1 patient due to severe psychiatric adverse event; Pheo – disease progression in 2 patients; Carcinoid – stable disease in 1 patient (6.5 months), and disease progression in 1 patient; NET – disease progression in 1 patient. IM does not appear to be useful for treatment of malignant endocrine tumors, also causing significant toxicity in this patient population.

Free access

Michaela Luconi, Monica Mangoni, Stefania Gelmini, Giada Poli, Gabriella Nesi, Michela Francalanci, Nicola Pratesi, Giulia Cantini, Adriana Lombardi, Monica Pepi, Tonino Ercolino, Mario Serio, Claudio Orlando, and Massimo Mannelli

Adrenocortical carcinoma (ACC) is a rare aggressive tumor with a poor prognosis. The lack of a specific and effective medical treatment is due to the poor knowledge of the mechanisms underlying tumor growth. Research on potential drugs able to specifically interfere with tumor proliferation is essential to develop more efficacious therapies. We evaluated for the first time the in vivo effect of rosiglitazone (RGZ), an anti-diabetic drug with in vitro anti-tumor properties, on ACC proliferation in a xenograft model obtained by s.c. injection of human ACC H295R cells in athymic mice. When the tumor size reached 5 mm, animals were allocated to 5 mg/kg RGZ- or water-treated groups. Tumor volume was measured twice a week. A significant reduction of tumor growth in RGZ versus control (control) group was observed and was already maximal following 17 day treatment (1−T/C=75.4% (43.7–93.8%)). After 31 days of treatment, mice were killed and tumor analyzed. Tumor histological evaluation revealed characteristics of invasiveness, richness in small vessels and mitotic figures in control group, while RGZ group tumors presented non infiltrating borders, few vessels, and many apoptotic bodies. Tumor immunohistochemistry showed that Ki-67 was reduced in RGZ versus control group. Quantitative real-time RT-PCR demonstrated a significant reduction in the expression of angiogenic (VEGF), vascular (CD31), proliferation (BMI-1), and anti-apoptotic (Bcl-2) genes in RGZ versus control group tumors. The same inhibitory effects were confirmed in in vitro RGZ-treated H295R. Our findings support and expand the role of RGZ in controlling ACC proliferation and angiogenesis in vivo and in vitro.

Free access

S G Creemers, P M van Koetsveld, F J van Kemenade, T G Papathomas, G J H Franssen, F Dogan, E M W Eekhoff, P van der Valk, W W de Herder, J A M J L Janssen, R A Feelders, and L J Hofland

Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. Discrimination of ACCs from adrenocortical adenomas (ACAs) is challenging on both imaging and histopathological grounds. High IGF2 expression is associated with malignancy, but shows large variability. In this study, we investigate whether specific methylation patterns of IGF2 regulatory regions could serve as a valuable biomarker in distinguishing ACCs from ACAs. Pyrosequencing was used to analyse methylation percentages in DMR0, DMR2, imprinting control region (ICR) (consisting of CTCF3 and CTCF6) and the H19 promoter. Expression of IGF2 and H19 mRNA was assessed by real-time quantitative PCR. Analyses were performed in 24 ACCs, 14 ACAs and 11 normal adrenals. Using receiver operating characteristic (ROC) analysis, we evaluated which regions showed the best predictive value for diagnosis of ACC and determined the diagnostic accuracy of these regions. In ACCs, the DMR0, CTCF3, CTCF6 and the H19 promoter were positively correlated with IGF2 mRNA expression (P<0.05). Methylation in the most discriminating regions distinguished ACCs from ACAs with a sensitivity of 96%, specificity of 100% and an area under the curve (AUC) of 0.997±0.005. Our findings were validated in an independent cohort of 9 ACCs and 13 ACAs, resulting in a sensitivity of 89% and a specificity of 92%. Thus, methylation patterns of IGF2 regulatory regions can discriminate ACCs from ACAs with high diagnostic accuracy. This proposed test may become the first objective diagnostic tool to assess malignancy in adrenal tumours and facilitate the choice of therapeutic strategies in this group of patients.

Free access

Alfredo Berruti, Massimo Terzolo, Paola Sperone, Anna Pia, Silvia Della Casa, David J Gross, Carlo Carnaghi, Paolo Casali, Francesco Porpiglia, Franco Mantero, Giuseppe Reimondo, Alberto Angeli, and Luigi Dogliotti

To investigate the activity of etoposide, doxorubicin, and cisplatin plus mitotane in the management of advanced adrenocortical carcinoma (ACC) patients, 72 patients with measurable disease not amenable to radical surgery were enrolled in a prospective, multicenter phase II trial. EDP schedule (etoposide 100 mg/m2 on days 5–7, doxorubicin 20 mg/m2 on days 1 and 8, and cisplatin 40 mg/m2 on days 1 and 9) was administered intravenously every 4 weeks. Concomitantly, patients were given up to 4 g/day of oral mitotane. Five patients achieved a complete response and 30 a partial response, for an overall response rate of 48.6% (95% CI: 37.1–60.3). Median time to progression in responding patients was 18 months. The EDP regimen was well tolerated, leukopenia being the dose limiting toxicity. One toxic related death due to septic shock, however, was registered. Radical surgical resection of residual disease after chemotherapy was performed in 10 patients. The overall survival of patients attaining a disease free status (clinical complete responders+radically resected) was significantly higher than that of patients with partial response or no response (P<0.002). Androgen secretion was associated with long survival, while glucocorticoid secretion was associated with poor prognosis both in univariate and multivariate analysis. In conclusion, EDP plus mitotane is an active and manageable combination scheme for ACC patients. Surgical resection of residual disease subsequent to chemotherapy leads to a more favourable outcome. The natural history of the disease is significantly influenced by the secretory status of the tumor.

Free access

Fidéline Bonnet-Serrano and Jérôme Bertherat

This review describes the molecular alterations observed in the various types of tumors of the adrenal cortex, excluding Conn adenomas, especially the alterations identified by genomic approaches these last five years. Two main forms of bilateral adrenocortical tumors can be distinguished according to size and aspect of the nodules: primary pigmented nodular adrenal disease (PPNAD), which can be sporadic or part of Carney complex and primary bilateral macro nodular adrenal hyperplasia (PBMAH). The bilateral nature of the tumors suggests the existence of an underlying genetic predisposition. PPNAD and Carney complex are mainly due to germline-inactivating mutations of PRKAR1A, coding for a regulatory subunit of PKA, whereas PBMAH genetic seems more complex. However, genome-wide approaches allowed the identification of a new tumor suppressor gene, ARMC5, whose germline alteration could be responsible for at least 25% of PBMAH cases. Unilateral adrenocortical tumors are more frequent, mostly adenomas. The Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by CTNNB1 mutations and by ZNRF3 inactivation in adrenal cancer (ACC). Some other signaling pathways are more specific of the tumor dignity. Thus, somatic mutations of cAMP/PKA pathway genes, mainly PRKACA, coding for the catalytic alpha-subunit of PKA, are found in cortisol-secreting adenomas, whereas IGF-II overexpression and alterations of p53 signaling pathway are observed in ACC. Genome-wide approaches including transcriptome, SNP, methylome and miRome analysis have identified new genetic and epigenetic alterations and the further clustering of ACC in subgroups associated with different prognosis, allowing the development of new prognosis markers.

Free access

S G Creemers, P M van Koetsveld, W W De Herder, F Dogan, G J H Franssen, R A Feelders, and L J Hofland

Chemotherapy for adrenocortical carcinoma (ACC) has limited efficacy and is accompanied by severe toxicity. This lack of effectiveness has been associated with high tumoral levels of the multidrug resistance (MDR) pump P-glycoprotein (P-gp), encoded by the MDR1 gene. In this study, effects of P-gp inhibition on the sensitivity of ACC cells to cytotoxic drugs were evaluated. MDR1 mRNA and P-gp expression were determined in human adrenal tissues and cell lines. H295R, HAC15 and SW13 cells were treated with mitotane, doxorubicin, etoposide, cisplatin and streptozotocin, with or without the P-gp inhibitors verapamil and tariquidar. Cell growth and surviving fraction of colonies were assessed. MDR1 mRNA and P-gp protein expression were lower in ACCs than in adrenocortical adenomas (P < 0.0001; P < 0.01, respectively). MDR1 and P-gp expression were positively correlated in ACC (P < 0.0001, ρ = 0.723). Mitotane, doxorubicin, cisplatin and etoposide dose dependently inhibited cell growth in H295R, HAC15 and SW13. Tariquidar, and in H295R also verapamil, increased the response of HAC15 and H295R to doxorubicin (6.3- and 7.5-fold EC50 decrease in H295R, respectively; all P < 0.0001). Sensitivity to etoposide was increased in H295R and HAC15 by verapamil and tariquidar (all P < 0.0001). Findings were confirmed when assessing colony formation. We show that cytotoxic drugs, except streptozotocin, used for ACC treatment, inhibit ACC cell growth and colony formation at clinically achievable concentrations. P-gp inhibition increases sensitivity to doxorubicin and etoposide, suggesting that MDR1 is involved in sensitivity to these drugs and could be a potential target for cytotoxic treatment improvement in ACC.