Search Results

You are looking at 81 - 90 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

M Seki, K Nomura, D Hirohara, M Kanazawa, T Sawada, K Takasaki, and H Demura

A 58-year-old man had adrenocortical carcinoma in the right adrenal gland. The tumour secreted excessive cortisol and dehydroepiandrosterone-sulphate (DHEA-S), and had invaded the right hepatic lobe and vena cava. Eleven months after surgical tumour resection, the serum DHEA-S levels again increased. Local tumour recurrence and a metastasis was found in the lung. Eleven months after surgery chemotherapy with mitotane (o,p'-DDD) was initiated. Twelve weeks of mitotane reduced serum DHEA-S levels and caused these tumours to disappear. The patient was then treated with low-dose mitotane (1.5-2.0 g/day) for 2 years. Serum levels of mitotane remained at less than 10 microg/ml. Although such low serum levels of mitotane and delayed initiation of mitotane after surgery have been proposed to weaken the antineoplastic effect of mitotane, the patient had a remission for 2 years. However, there was then local re-recurrence with an increase in serum DHEA-S and death 4 months later. The histological features of neoplastic cells were quite different comparing tumour resected at surgery and tumour at autopsy. The latter had more frequent mitotic nuclei. This tumour was initially sensitive to mitotane, but later became insensitive.

Free access

Nunki Hassan, Jing Ting Zhao, Anthony Glover, Bruce G Robinson, and Stan B Sidhu

Adrenocortical carcinoma (ACC) has high recurrence rates and poor prognosis with limited response to conventional cancer therapy. Recent contributions of high-throughput transcriptomic profiling identified microRNA-497 (miR-497) as significantly underexpressed, while lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) as overexpressed in ACC. miR-497 is located in the chromosomal region 17p13.1, in which there is a high frequency of loss of heterozygosity in ACC. We aim to investigate the interaction of miR-497 and MALAT1 in ACC and its functional roles in the process of tumourigenesis. In this study, we demonstrated miR-497 post-transcriptionally repressed MALAT1 while MALAT1 also competes for miR-497 binding to its molecular target, EIF4E (eukaryotic translation initiation factor 4E). We showed that overexpression of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell cycle arrest through downregulation of EIF4E expression. Furthermore, MALAT1 directly binds to SFPQ (splicing factor proline and glutamine rich) protein, indicating its multifaceted roles in ACC pathophysiology. This is the first study to identify the feedback axis of miR-497-MALAT1/EIF4E in ACC tumourigenesis, providing novel insights into the molecular functions of noncoding RNAs in ACC.

Free access

David J Gross, Gabriel Munter, Menachem Bitan, Tali Siegal, Alberto Gabizon, Ronny Weitzen, Ofer Merimsky, Aliza Ackerstein, Asher Salmon, Avishai Sella, and Shimon Slavin

Group-author : The Israel Glivec in Solid Tumors Study Group

Imatinib mesylate (IM), a small molecule that is a selective inhibitor of the ABL, platelet derived growth factor receptor (PDGFR-R) and stem cell ligand receptor (c-kit) tyrosine kinases (TK). IM was also found to inhibit the TK activity of BCR/ABL fusion protein produced in chronic myelogenous leukemia, with marked clinical activity against the disease. Since both PDGF-R and c-kit both having a putative role in tumorigenesis, we investigated the efficacy and safety of the use of IM in patients with endocrine tumors unresponsive to conventional therapies that expressed c-kit and/or PDGF-R (within the framework of a comprehensive phase II multi-center study of IM in patients with solid tumors). IM was initiated at a dose of 400 mg/day, with possible dose escalation within 1 week to 600 mg/day and an option to raise the dose to 800 mg/day in the event of progression and in the absence of safety concerns for a period of up to 12 months. Between September 2002 and July 2003, 15 adult patients with disseminated endocrine tumors were recruited as follows: medullary thyroid carcinoma (MTC, n = 6); adrenocortical carcinoma (ACC, n = 4); malignant pheochromocytoma (pheo, n = 2); carcinoid (non-secreting, n = 2), neuroendocrine tumor (NET, n = 1). No objective responses were observed. MTC – disease progression in 4 patients, and treatment discontinuation in 2 patients due to adverse events; ACC – disease progression in 3 patients, and treatment discontinuation in 1 patient due to severe psychiatric adverse event; Pheo – disease progression in 2 patients; Carcinoid – stable disease in 1 patient (6.5 months), and disease progression in 1 patient; NET – disease progression in 1 patient. IM does not appear to be useful for treatment of malignant endocrine tumors, also causing significant toxicity in this patient population.

Free access

L Cerquetti, B Bucci, R Marchese, S Misiti, U De Paula, R Miceli, A Muleti, D Amendola, P Piergrossi, E Brunetti, V Toscano, and A Stigliano

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p′-DDD) is an agent with adrenotoxic effect, which is able to block cortisol synthesis. This drug and radiotherapy are used also in adrenal cancer treatment even if their biological action in this neoplasia remains unknown. We investigated the effects of o,p′-DDD and ionizing radiations (IR) on cell growth inhibition and cell cycle perturbation in H295R and SW13 adrenocortical cancer cells. Both cell lines were irradiated at a 6 Gy dose and were treated with o,p′-DDD 10−5 M separately and with IR/o,p′-DDD in combination. This combination treatment induced an irreversible inhibition of cell growth in both adrenocortical cancer cells. Cell cycle analysis showed that IR alone and IR/o,p′-DDD in combination induced the cell accumulation in the G2 phase. At 120 h after IR, the cells were able to recover the IR-induced G2 block while cells treated with IR/o,p′-DDD were still arrested in G2 phase. In order to study the molecular mechanism involved in the G2 irreversible arrest, we have considered the H295R cell line showing the highest inhibition of cell proliferation associated with a noteworthy G2 arrest. In these cells, cyclin B1 and Cdk2 proteins were examined by western blot and Cdk2 kinase activity measured by assay kit. The H295R cells treated with IR/o,p′-DDD shared an increase in cyclin B1 amount as the coimmunoprecipitation of Cdc2–cyclin B1 complex. The kinase activity also shows an increase in the treated cells with combination therapy. Moreover, in these cells, sequence analysis of p53 revealed a large deletion of exons 8 and 9. The same irreversible block on G2 phase, induced by IR/o,p′-DDD treatment, happened in H295R cells with restored wild-type p53 suggesting that this mechanism is not mediated by p53 pathway.

Open access

Kate M Warde, Erik Schoenmakers, Eduardo Ribes Martinez, Yi Jan Lim, Maeve Leonard, Sarah J Lawless, Paula O’Shea, Krishna V Chatterjee, Mark Gurnell, Constanze Hantel, and Michael Conall Dennedy

Adrenocortical carcinoma (ACC) is a rare aggressive malignancy with a poor outcome largely due to limited treatment options. Here, we propose a novel therapeutic approach through modulating intracellular free cholesterol via the liver X receptor alpha (LXRα) in combination with current first-line pharmacotherapy, mitotane. H295R and MUC-1 ACC cell lines were pretreated with LXRα inhibitors in combination with mitotane. In H295R, mitotane (20, 40 and 50 µM) induced dose-dependent cell death; however, in MUC-1, this only occurred at a supratherapeutic concentration (200 µM). LXRα inhibition potentiated mitotane-induced cytotoxicity in both cell lines. This was confirmed through use of the CompuSyn model which showed moderate pharmacological synergism and was indicative of apoptotic cell death via an increase in annexinV and cleaved-caspase 3 expression. Inhibition of LXRα was confirmed through downregulation of cholesterol efflux pumps ABCA1 and ABCG1; however, combination treatment with mitotane attenuated this effect. Intracellular free-cholesterol levels were associated with increased cytotoxicity in H295R (r 2 = 0.5210) and MUC-1 (r 2 = 0.9299) cells. While both cell lines exhibited similar levels of free cholesterol at baseline, H295R were cholesterol ester rich, whereas MUC-1 were cholesterol ester poor. We highlight the importance of LXRα mediated cholesterol metabolism in the management of ACC, drawing attention to its role in the therapeutics of mitotane sensitive tumours. We also demonstrate significant differences in cholesterol storage between mitotane sensitive and resistant disease.

Free access

Alfredo Berruti, Massimo Terzolo, Paola Sperone, Anna Pia, Silvia Della Casa, David J Gross, Carlo Carnaghi, Paolo Casali, Francesco Porpiglia, Franco Mantero, Giuseppe Reimondo, Alberto Angeli, and Luigi Dogliotti

To investigate the activity of etoposide, doxorubicin, and cisplatin plus mitotane in the management of advanced adrenocortical carcinoma (ACC) patients, 72 patients with measurable disease not amenable to radical surgery were enrolled in a prospective, multicenter phase II trial. EDP schedule (etoposide 100 mg/m2 on days 5–7, doxorubicin 20 mg/m2 on days 1 and 8, and cisplatin 40 mg/m2 on days 1 and 9) was administered intravenously every 4 weeks. Concomitantly, patients were given up to 4 g/day of oral mitotane. Five patients achieved a complete response and 30 a partial response, for an overall response rate of 48.6% (95% CI: 37.1–60.3). Median time to progression in responding patients was 18 months. The EDP regimen was well tolerated, leukopenia being the dose limiting toxicity. One toxic related death due to septic shock, however, was registered. Radical surgical resection of residual disease after chemotherapy was performed in 10 patients. The overall survival of patients attaining a disease free status (clinical complete responders+radically resected) was significantly higher than that of patients with partial response or no response (P<0.002). Androgen secretion was associated with long survival, while glucocorticoid secretion was associated with poor prognosis both in univariate and multivariate analysis. In conclusion, EDP plus mitotane is an active and manageable combination scheme for ACC patients. Surgical resection of residual disease subsequent to chemotherapy leads to a more favourable outcome. The natural history of the disease is significantly influenced by the secretory status of the tumor.

Free access

S G Creemers, P M van Koetsveld, W W De Herder, F Dogan, G J H Franssen, R A Feelders, and L J Hofland

Chemotherapy for adrenocortical carcinoma (ACC) has limited efficacy and is accompanied by severe toxicity. This lack of effectiveness has been associated with high tumoral levels of the multidrug resistance (MDR) pump P-glycoprotein (P-gp), encoded by the MDR1 gene. In this study, effects of P-gp inhibition on the sensitivity of ACC cells to cytotoxic drugs were evaluated. MDR1 mRNA and P-gp expression were determined in human adrenal tissues and cell lines. H295R, HAC15 and SW13 cells were treated with mitotane, doxorubicin, etoposide, cisplatin and streptozotocin, with or without the P-gp inhibitors verapamil and tariquidar. Cell growth and surviving fraction of colonies were assessed. MDR1 mRNA and P-gp protein expression were lower in ACCs than in adrenocortical adenomas (P < 0.0001; P < 0.01, respectively). MDR1 and P-gp expression were positively correlated in ACC (P < 0.0001, ρ = 0.723). Mitotane, doxorubicin, cisplatin and etoposide dose dependently inhibited cell growth in H295R, HAC15 and SW13. Tariquidar, and in H295R also verapamil, increased the response of HAC15 and H295R to doxorubicin (6.3- and 7.5-fold EC50 decrease in H295R, respectively; all P < 0.0001). Sensitivity to etoposide was increased in H295R and HAC15 by verapamil and tariquidar (all P < 0.0001). Findings were confirmed when assessing colony formation. We show that cytotoxic drugs, except streptozotocin, used for ACC treatment, inhibit ACC cell growth and colony formation at clinically achievable concentrations. P-gp inhibition increases sensitivity to doxorubicin and etoposide, suggesting that MDR1 is involved in sensitivity to these drugs and could be a potential target for cytotoxic treatment improvement in ACC.

Free access

A R Glover, J T Zhao, J C Ip, J C Lee, B G Robinson, A J Gill, P S H Soon, and S B Sidhu

Adrenocortical carcinoma (ACC) is an aggressive malignancy with high rates of recurrence following surgical resection. Long noncoding RNAs (lncRNAs) play an important role in cancer development. Pathogenesis of adrenal tumours have been characterised by mRNA, microRNA and methylation expression signatures, but it is unknown if this extends to lncRNAs. This study describes lncRNA expression signatures in ACC, adrenal cortical adenoma (ACA) and normal adrenal cortex (NAC) and presents lncRNAs associated with ACC recurrence to identify novel prognostic and therapeutic targets. RNA was extracted from freshly frozen tissue with confirmation of diagnosis by histopathology. Focused lncRNA and mRNA transcriptome analysis was performed using the ArrayStar Human LncRNA V3.0 microarray. Differentially expressed lncRNAs were validated using quantitative reverse transcriptase-PCR and correlated with clinical outcomes. Microarray of 21 samples (ten ACCs, five ACAs and six NACs) showed distinct patterns of lncRNA expression between each group. A total of 956 lncRNAs were differentially expressed between ACC and NAC, including known carcinogenesis-related lncRNAs such as H19, GAS5, MALAT1 and PRINS (P≤0.05); 85 lncRNAs were differentially expressed between ACC and ACA (P≤0.05). Hierarchical clustering and heat mapping showed ACC samples correctly grouped compared with NAC and ACA. Sixty-six differentially expressed lncRNAs were found to be associated with ACC recurrence (P≤0.05), one of which, PRINS, was validated in a group of 20 ACCs and also found to be associated with metastatic disease on presentation. The pathogenesis of adrenal tumours extends to lncRNA dysregulation and low expression of the lncRNA PRINS is associated with ACC recurrence.

Open access

Tiantian Liu, Taylor C Brown, C Christofer Juhlin, Adam Andreasson, Na Wang, Martin Bäckdahl, James M Healy, Manju L Prasad, Reju Korah, Tobias Carling, Dawei Xu, and Catharina Larsson

The telomerase reverse transcriptase gene (TERT) encodes the reverse transcriptase component of the telomerase complex, which is essential for telomere stabilization and cell immortalization. Recent studies have demonstrated a transcriptional activation role for the TERT promoter mutations C228T and C250T in many human cancers, as well as a role in aggressive disease with potential clinical applications. Although telomerase activation is known in adrenal tumors, the underlying mechanisms are not established. We assessed C228T and C250T TERT mutations by direct Sanger sequencing in tumors of the adrenal gland, and further evaluated potential associations with clinical parameters and telomerase activation. A total of 199 tumors were evaluated, including 34 adrenocortical carcinomas (ACC), 47 adrenocortical adenomas (ACA), 105 pheochromocytomas (PCC; ten malignant and 95 benign), and 13 abdominal paragangliomas (PGL; nine malignant and four benign). TERT expression levels were determined by quantitative RT-PCR. The C228T mutation was detected in 4/34 ACCs (12%), but not in any ACA (P=0.028). C228T was also observed in one benign PCC and in one metastatic PGL. The C250T mutation was not observed in any case. In the ACC and PGL groups, TERT mutation-positive cases exhibited TERT expression, indicating telomerase activation; however, since expression was also revealed in TERT WT cases, this could denote additional mechanisms of TERT activation. To conclude, the TERT promoter mutation C228T is a recurrent event associated with TERT expression in ACCs, but rarely occurs in PGL and PCC. The involvement of the TERT gene in ACC represents a novel mutated gene in this entity.

Free access

Vassiliki Kotoula, Elias Sozopoulos, Helen Litsiou, Galinos Fanourakis, Triantafyllia Koletsa, Gerassimos Voutsinas, Sophia Tseleni-Balafouta, Constantine S Mitsiades, Axel Wellmann, and Nicholas Mitsiades

The serine/threonine kinase B-Raf plays a key role in the Ras/Raf/MEK/ERK pathway that relays extracellular signals for cell proliferation and survival. Several types of human malignancies harbor activating BRAF mutations, most frequently a V600E substitution. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase (TK) receptor that mediates proliferation and survival signaling, is expressed in a wide variety of normal and neoplastic tissues. EGFR inhibitors have produced objective responses in patients with non-small cell lung carcinomas harboring activating EGFR TK domain somatic mutations. We evaluated the presence of mutations in BRAF (exons 11 and 15), KRAS (exons 1 and 2), NRAS (exons 1 and 2), and EGFR (exons 18–21) in adrenal carcinomas (35 tumor specimens and two cell lines) by DNA sequencing. BRAF mutations were found in two carcinomas (5.7%). Four carcinomas (11.4%) carried EGFR TK domain mutations. One specimen carried a KRAS mutation, and another carried two NRAS mutations. No mutations were found in the two adrenocortical cell lines. BRAF- and EGFR-mutant tumor specimens exhibited stronger immunostaining for the phosphorylated forms of the MEK and ERK kinases than their wild-type counterparts. EGFR-mutant carcinomas exhibited increased phosphorylation of EGFR (Tyr 992) compared with wild-type carcinomas. We conclude that BRAF, RAS, and EGFR mutations occur in a subset of human adrenocortical carcinomas. Inhibitors of the Ras/Raf/MEK/ERK and EGFR pathways represent candidate targeted therapies for future clinical trials in carefully selected patients with adrenocortical carcinomas harboring respective activating mutations.