Search Results

You are looking at 81 - 90 of 106 items for

  • Abstract: Cushing's x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Open access

Deniz M Özata, Stefano Caramuta, David Velázquez-Fernández, Pinar Akçakaya, Hong Xie, Anders Höög, Jan Zedenius, Martin Bäckdahl, Catharina Larsson, and Weng-Onn Lui

Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC.

Free access

Nunki Hassan, Jing Ting Zhao, Anthony Glover, Bruce G Robinson, and Stan B Sidhu

Adrenocortical carcinoma (ACC) has high recurrence rates and poor prognosis with limited response to conventional cancer therapy. Recent contributions of high-throughput transcriptomic profiling identified microRNA-497 (miR-497) as significantly underexpressed, while lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) as overexpressed in ACC. miR-497 is located in the chromosomal region 17p13.1, in which there is a high frequency of loss of heterozygosity in ACC. We aim to investigate the interaction of miR-497 and MALAT1 in ACC and its functional roles in the process of tumourigenesis. In this study, we demonstrated miR-497 post-transcriptionally repressed MALAT1 while MALAT1 also competes for miR-497 binding to its molecular target, EIF4E (eukaryotic translation initiation factor 4E). We showed that overexpression of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell cycle arrest through downregulation of EIF4E expression. Furthermore, MALAT1 directly binds to SFPQ (splicing factor proline and glutamine rich) protein, indicating its multifaceted roles in ACC pathophysiology. This is the first study to identify the feedback axis of miR-497-MALAT1/EIF4E in ACC tumourigenesis, providing novel insights into the molecular functions of noncoding RNAs in ACC.

Free access

Michaela Luconi, Monica Mangoni, Stefania Gelmini, Giada Poli, Gabriella Nesi, Michela Francalanci, Nicola Pratesi, Giulia Cantini, Adriana Lombardi, Monica Pepi, Tonino Ercolino, Mario Serio, Claudio Orlando, and Massimo Mannelli

Adrenocortical carcinoma (ACC) is a rare aggressive tumor with a poor prognosis. The lack of a specific and effective medical treatment is due to the poor knowledge of the mechanisms underlying tumor growth. Research on potential drugs able to specifically interfere with tumor proliferation is essential to develop more efficacious therapies. We evaluated for the first time the in vivo effect of rosiglitazone (RGZ), an anti-diabetic drug with in vitro anti-tumor properties, on ACC proliferation in a xenograft model obtained by s.c. injection of human ACC H295R cells in athymic mice. When the tumor size reached 5 mm, animals were allocated to 5 mg/kg RGZ- or water-treated groups. Tumor volume was measured twice a week. A significant reduction of tumor growth in RGZ versus control (control) group was observed and was already maximal following 17 day treatment (1−T/C=75.4% (43.7–93.8%)). After 31 days of treatment, mice were killed and tumor analyzed. Tumor histological evaluation revealed characteristics of invasiveness, richness in small vessels and mitotic figures in control group, while RGZ group tumors presented non infiltrating borders, few vessels, and many apoptotic bodies. Tumor immunohistochemistry showed that Ki-67 was reduced in RGZ versus control group. Quantitative real-time RT-PCR demonstrated a significant reduction in the expression of angiogenic (VEGF), vascular (CD31), proliferation (BMI-1), and anti-apoptotic (Bcl-2) genes in RGZ versus control group tumors. The same inhibitory effects were confirmed in in vitro RGZ-treated H295R. Our findings support and expand the role of RGZ in controlling ACC proliferation and angiogenesis in vivo and in vitro.

Free access

Sandra Rodríguez-Rodero, Elías Delgado-Álvarez, Agustín F Fernández, Juan L Fernández-Morera, Edelmiro Menéndez-Torre, and Mario F Fraga

Aberrant epigenetics is a hallmark of cancer, and endocrine-related tumors are no exception. Recent research has been identifying an ever-growing number of epigenetic alterations in both genomic DNA methylation and histone post-translational modification in tumors of the endocrine system. Novel microarray and ultra-deep sequencing technologies have allowed the identification of genome-wide epigenetic patterns in some tumor types such as adrenocortical, parathyroid, and breast carcinomas. However, in other cancer types, such as the multiple endocrine neoplasia syndromes and thyroid cancer, tumor information is limited to candidate genes alone. Future research should fill this gap and deepen our understanding of the functional role of these alterations in cancer, as well as defining their possible clinical uses.

Free access

O Chabre, R Libé, G Assie, O Barreau, J Bertherat, X Bertagna, J-J Feige, and N Cherradi

Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Local and distant recurrences occur in a subset of tumors classified as ‘aggressive’ ACC (aACC), as opposed to ‘non-aggressive’ ACC (naACC). In this study, we investigated whether tissue and serum microRNAs (miRNAs) are predictive of ACC prognosis. Tissue miRNA expression profiles were determined using microarrays in a test series of six adrenocortical adenomas (ACAs), six naACCs, and six aACCs. Eight miRNAs were selected for further validation by quantitative RT-PCR (ten ACAs, nine naACCs, nine aACCs, and three normal adrenals). Serum levels of five miRNAs were measured in samples from 56 subjects (19 healthy controls (HC), 14 ACA, nine naACC, and 14 aACC patients). MiR-195 and miR-335 levels were significantly decreased in both tumor and serum samples of ACC patients relative to ACA patients or HC. MiR-139-5p and miR-376a levels were significantly increased in aACC compared with naACC patients in tumor samples only. Tissue miR-483-5p was markedly upregulated in a majority of ACC compared with ACA patients or HC, but most importantly, serum miR-483-5p was detected only in aACC patients. High circulating levels of miR-483-5p or low circulating levels of miR-195 were associated with both shorter recurrence-free survival (P=0.0004 and P=0.0014 respectively) and shorter overall survival (P=0.0005 and P=0.0086 respectively). In conclusion, this study reports for the first time that circulating miR-483-5p and miR-195 are promising noninvasive biomarkers with a highly specific prognostic value for the clinical outcome of ACC patients.

Free access

Debbie L Hay, Christopher S Walker, and David R Poyner

Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the ‘ADMR’), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

Free access

Michael Solarski, Fabio Rotondo, William D Foulkes, John R Priest, Luis V Syro, Henriett Butz, Michael D Cusimano, and Kalman Kovacs

In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.

Restricted access

S G Creemers, R A Feelders, N Valdes, C L Ronchi, M Volante, B M van Hemel, M Luconi, M H T Ettaieb, M Mannelli, M D Chiara, M Fassnacht, M Papotti, M N Kerstens, G Nesi, H R Haak, F J van Kemenade, and L J Hofland

Adrenocortical carcinoma (ACC) is diagnosed using the histopathological Weiss score (WS), but remains clinically elusive unless it has metastasized or grows locally invasive. Previously, we proposed the objective IGF2 methylation score as diagnostic tool for ACC. This multicenter European cohort study validates these findings. Patient and tumor characteristics were obtained from adrenocortical tumor patients. DNA was isolated from frozen specimens, where after DMR2, CTCF3, and H19 were pyrosequenced. The predictive value of the methylation score for malignancy, defined by the WS or metastasis development, was assessed using receiver operating characteristic curves and logistic and Cox regression analyses. Seventy-six ACC patients and 118 patients with adrenocortical adenomas were included from seven centers. The methylation score and tumor size were independently associated with the pathological ACC diagnosis (OR 3.756 95% CI 2.224–6.343; OR 1.467 95% CI 1.202–1.792, respectively; Hosmer–Lemeshow test P = 0.903), with an area under the curve (AUC) of 0.957 (95% CI 0.930–0.984). The methylation score alone resulted in an AUC of 0.910 (95% CI 0.866–0.952). Cox regression analysis revealed that the methylation score, WS and tumor size predicted development of metastases in univariate analysis. In multivariate analysis, only the WS predicted development of metastasis (OR 1.682 95% CI 1.285–2.202; P < 0.001). In conclusion, we validated the high diagnostic accuracy of the IGF2 methylation score for diagnosing ACC in a multicenter European cohort study. Considering the known limitations of the WS, the objective IGF2 methylation score could potentially provide extra guidance on decisions on postoperative strategies in adrenocortical tumor patients.

Free access

Eva Szarek, Evan R Ball, Alessio Imperiale, Maria Tsokos, Fabio R Faucz, Alessio Giubellino, François-Marie Moussallieh, Izzie-Jacques Namer, Mones S Abu-Asab, Karel Pacak, David Taïeb, J Aidan Carney, and Constantine A Stratakis

Carney triad (CTr) describes the association of paragangliomas (PGL), pulmonary chondromas, and gastrointestinal (GI) stromal tumors (GISTs) with a variety of other lesions, including pheochromocytomas and adrenocortical tumors. The gene(s) that cause CTr remain(s) unknown. PGL and GISTs may be caused by loss-of-function mutations in succinate dehydrogenase (SDH) (a condition known as Carney–Stratakis syndrome (CSS)). Mitochondrial structure and function are abnormal in tissues that carry SDH defects, but they have not been studied in CTr. For the present study, we examined mitochondrial structure in human tumors and GI tissue (GIT) of mice with SDH deficiency. Tissues from 16 CTr tumors (n=12), those with isolated GIST (n=1), and those with CSS caused by SDHC (n=1) and SDHD (n=2) mutations were studied by electron microscopy (EM). Samples of GIT from mice with a heterozygous deletion in Sdhb (Sdhb + /−, n=4) were also studied by EM. CTr patients presented with mostly epithelioid GISTs that were characterized by plump cells containing a centrally located, round nucleus and prominent nucleoli; these changes were almost identical to those seen in the GISTs of patients with SDH. In tumor cells from patients, regardless of diagnosis or tumor type, cytoplasm contained an increased number of mitochondria with a ‘hypoxic’ phenotype: mitochondria were devoid of cristae, exhibited structural abnormalities, and were of variable size. Occasionally, mitochondria were small and round; rarely, they were thin and elongated with tubular cristae. Many mitochondria exhibited amorphous fluffy material with membranous whorls or cystic structures. A similar mitochondrial hypoxic phenotype was seen in Sdhb + /− mice. We concluded that tissues from SDH-deficient tumors, those from mouse GIT, and those from CTr tumors shared identical abnormalities in mitochondrial structure and other features. Thus, the still-elusive CTr defect(s) is(are) likely to affect mitochondrial function, just like germline SDH-deficiency does.

Free access

Alfredo Berruti, Massimo Terzolo, Paola Sperone, Anna Pia, Silvia Della Casa, David J Gross, Carlo Carnaghi, Paolo Casali, Francesco Porpiglia, Franco Mantero, Giuseppe Reimondo, Alberto Angeli, and Luigi Dogliotti

To investigate the activity of etoposide, doxorubicin, and cisplatin plus mitotane in the management of advanced adrenocortical carcinoma (ACC) patients, 72 patients with measurable disease not amenable to radical surgery were enrolled in a prospective, multicenter phase II trial. EDP schedule (etoposide 100 mg/m2 on days 5–7, doxorubicin 20 mg/m2 on days 1 and 8, and cisplatin 40 mg/m2 on days 1 and 9) was administered intravenously every 4 weeks. Concomitantly, patients were given up to 4 g/day of oral mitotane. Five patients achieved a complete response and 30 a partial response, for an overall response rate of 48.6% (95% CI: 37.1–60.3). Median time to progression in responding patients was 18 months. The EDP regimen was well tolerated, leukopenia being the dose limiting toxicity. One toxic related death due to septic shock, however, was registered. Radical surgical resection of residual disease after chemotherapy was performed in 10 patients. The overall survival of patients attaining a disease free status (clinical complete responders+radically resected) was significantly higher than that of patients with partial response or no response (P<0.002). Androgen secretion was associated with long survival, while glucocorticoid secretion was associated with poor prognosis both in univariate and multivariate analysis. In conclusion, EDP plus mitotane is an active and manageable combination scheme for ACC patients. Surgical resection of residual disease subsequent to chemotherapy leads to a more favourable outcome. The natural history of the disease is significantly influenced by the secretory status of the tumor.