Search Results

You are looking at 91 - 100 of 108 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Restricted access

Chiara Verdelli, Irene Forno, Annamaria Morotti, Riccardo Maggiore, Gilberto Mari, Leonardo Vicentini, Stefano Ferrero, Elisabetta Kuhn, Valentina Alessandra Vaira, and Sabrina Corbetta

Tumors of the parathyroid glands are highly vascularized and display a microRNAs (miRNAs) profile divergent from normal parathyroid glands (PaNs). Angiogenic miRNAs, namely miR-126-3p, miR-126-5p, and miR-296-5p, have been found downregulated in parathyroid tumors. Here, we show that miR-126-3p expression levels are reduced in parathyroid adenomas (PAds; n=12) compared with PaNs (n=4). In situ hybridization (ISH) of miR-126-3p and miR-296-5p in 10 PAds show that miR-126-3p is expressed by endothelial cells lining the walls of great vessels and by cells within the thin stroma surrounding acinar structures. At variance, miR-296-5p was detectable in most PAd epithelial cells. Combining ISH for miR-126-3p with immunohistochemistry for the endothelial and mesenchymal markers CD34, CD31 and α-smooth-muscle-actin (αSMA), we could identify that miR-126-3p is localized in the αSMA-positive thin stroma. Further, miR-126-3p-expressing cells are enriched in the CD34-positive stromal cells surrounding epithelial cell acinar structures, a cellular pattern consistent with tumor-associated myofibroblasts (TAMs). In line with this, CD34-positive cells, sorted by FACS from PAds tissues, express miR-126-3p at higher levels than CD34-negative cells, suggesting that miR-126-3p downregulation promotes the endothelial-to-αSMA+ mesenchymal transition. In human mesenchymal stem cells derived from bone marrow (hBM-MSCs), a model of TAMs, the co-culture with PAds-derived cells for 5 days decreases miR-126-3p, while it increases VEGFA expression. At variance, adrenomedullin (ADM) expression is unaffected. Finally, overexpression of the miR-126-3p mimic in both hBM-MSCs and PAds-derived explants downregulates VEGFA expression levels. In conclusion, miR-126-3p is expressed by both endothelial cells and TAMs in PAds, and its downregulation promotes neoangiogenesis, possibly through VEGFA over-expression.

Free access

Wiebke Fenske, Hans-Ullrich Völker, Patrick Adam, Stefanie Hahner, Sarah Johanssen, Sebastian Wortmann, Melanie Schmidt, Michael Morcos, Hans-Konrad Müller-Hermelink, Bruno Allolio, and Martin Fassnacht

Owing to the rarity of adrenocortical carcinoma (ACC) no prognostic markers have been established beyond stage and resection status. Accelerated glycolysis is a characteristic feature of cancer cells and in a variety of tumour entities key factors in glucose metabolism like glucose transporter 1 and 3 (GLUT1 and -3), transketolase like-1 enzyme (TKTL1) and pyruvate kinase type M2 (M2-PK) are overexpressed and of prognostic value. Therefore, we investigated the role of these factors in ACC. Immunohistochemical analysis was performed on tissue microarrays of paraffin-embedded tissue samples from 167 ACCs, 15 adrenal adenomas and 4 normal adrenal glands. Expression was correlated with baseline parameters and clinical outcome. GLUT1 and -3 were expressed in 33 and 17% of ACC samples respectively, but in none of the benign tumours or normal adrenals glands. By contrast, TKTL1 and M2-PK were detectable in all benign tissues and the vast majority of ACCs. GLUT1 expression was strongly associated with prognosis in univariate and multivariate analysis (P<0.01), whereas GLUT3, TKTL1 and M2-PK did not correlate with clinical outcome. Patients with strong GLUT1 staining showed a considerably higher overall mortality (hazard ratio (HR) 6.34 (95% confidence interval 3.10–12.90) compared with patients with no GLUT1 staining. When analysing patients in their early stages and advanced disease separately, similar results were obtained. HR for survival was 5.31 (1.80–15.62) in patients with metatastic ACC and in patients after radical resection the HR for disease-free survival was 6.10 (2.16–16.94). In conclusion, GLUT1 is a highly promising stage-independent, prognostic marker in ACC.

Free access

A Karpathakis, H Dibra, and C Thirlwell

The field of epigenetics has evolved rapidly over recent years providing insight into the tumorigenesis of many solid and haematological malignancies. Determination of epigenetic modifications in neuroendocrine tumour (NET) development is imperative if we are to improve our understanding of the biology of this heterogenous group of tumours. Epigenetic marks such as DNA methylation at RASSF1A are frequent findings in NETs of all origins and may be associated with worse prognosis. MicroRNA signatures and histone modifications have been identified which can differentiate subtypes of NET and distinguish NET from adenocarcinoma in cases of diagnostic uncertainty. Historically, candidate gene-driven approaches have yielded limited insight into the epigenetics of NET. Recent progress has been facilitated by development of high-throughput tools including second-generation sequencing and arrays for analysis of the ‘epigenome’ of tumour and normal tissue, permitting unbiased approaches such as exome sequencing that identified mutations of chromatin-remodelling genes ATRX/DAXX in 44% of pancreatic NETs. Epigenetic changes are reversible and therefore represent an attractive therapeutic target; to date, clinical outcomes of epigenetic therapies in solid tumours have been disappointing; however, in vitro studies on NETs are promising and further clinical trials are required to determine utility of this class of novel agents. In this review, we perform a comprehensive evaluation of epigenetic changes found in NETs to date, including rare NETs such as phaeochromocytoma and adrenocortical tumours. We suggest priorities for future research and discuss potential clinical applications and novel therapies.

Restricted access

Isadora Pontes Cavalcante, Anna Vaczlavik, Ludivine Drougat, Claudimara Ferini Pacicco Lotfi, Karine Perlemoine, Christopher Ribes, Marthe Rizk-Rabin, Eric Clauser, Maria Candida Barisson Villares Fragoso, Jérôme Bertherat, and Bruno Ragazzon

ARMC5 (Armadillo repeat containing 5 gene) was identified as a new tumor suppressor gene responsible for hereditary adrenocortical tumors and meningiomas. ARMC5 is ubiquitously expressed and encodes a protein which contains a N-terminal Armadillo repeat domain and a C-terminal BTB (Bric-a-Brac, Tramtrack and Broad-complex) domain, both docking platforms for numerous proteins. At present, expression regulation and mechanisms of action of ARMC5 are almost unknown. In this study, we showed that ARMC5 interacts with CUL3 requiring its BTB domain. This interaction leads to ARMC5 ubiquitination and further degradation by the proteasome. ARMC5 alters cell cycle (G1/S phases and cyclin E accumulation) and this effect is blocked by CUL3. Moreover, missense mutants in the BTB domain of ARMC5, identified in patients with multiple adrenocortical tumors, are neither able to interact and be degraded by CUL3/proteasome nor alter cell cycle. These data show a new mechanism of regulation of the ARMC5 protein and open new perspectives in the understanding of its tumor suppressor activity.

Free access

Alfred King-yin Lam

Adrenal lipomatous tumour is a group of adrenal tumours with a significant component of adipose tissue. According to the current World Health Organization (WHO) classification of tumours of endocrine organs, adrenal myelolipoma is the only entity amongst the group of tumours being described. In the literature, other more recently documented adrenal lipomatous tumours included 24 lipomas, 32 teratomas and 16 angiomyolipomas. Rare fatty tumours of the adrenal gland comprised liposarcoma, hibernoma, adrenocortical tumours with fat component and rare adrenal tumours with fat component. Myelolipoma comprises approximately 3% of primary adrenal tumour. It is noted more commonly in females and in the right adrenal gland. Approximately 40 bilateral myelolipomas were reported. The tumour is most frequently recorded in patients between fifth and seventh decades of life. Adrenal lipomas are often seen in males and in the right adrenal gland. They were commonly noted in patients in the sixth decade of life. The diagnosis could only be possible on examination of the surgically removed specimen. Adrenal teratomas were more common in females and with a bimodal age distribution. Slightly over 60% of the patients with adrenal teratoma are symptomatic. Adrenal angiomyolipomas were often symptomatic, more common in females and in the fifth decades of life. To conclude, adrenal lipomatous tumour is uncommon. They are often benign and non-functional. It is important to recognize the features of this group of lipomatous tumours in the adrenal gland as they are being detected on increasing incidence as a result of the wide-spread use of modern imaging modalities.

Free access

Thomas G Papathomas, Lindsey Oudijk, Ellen C Zwarthoff, Edward Post, Floor A Duijkers, Max M van Noesel, Leo J Hofland, Patrick J Pollard, Eamonn R Maher, David F Restuccia, Richard A Feelders, Gaston J H Franssen, Henri J Timmers, Stefan Sleijfer, Wouter W de Herder, Ronald R de Krijger, Winand N M Dinjens, and Esther Korpershoek

Hotspot mutations in the promoter of the telomerase reverse transcriptase (TERT) gene have been recently reported in human cancers and proposed as a novel mechanism of telomerase activation. To explore TERT promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia, a set of 253 tumors (38 adrenocortical carcinomas (ACCs), 127 pheochromocytomas (PCCs), 18 extra-adrenal paragangliomas (ea PGLs), 37 head and neck PGLs (HN PGLs), and 33 peripheral neuroblastic tumors) was selected along with 16 human neuroblastoma (NBL) and two ACC cell lines to assess TERT promoter mutations by the Sanger sequencing method. All mutations detected were confirmed by a SNaPshot assay. Additionally, 36 gastrointestinal stromal tumors (GISTs) were added to explore an association between TERT promoter mutations and SDH deficiency. TERT promoter mutations were found in seven out of 289 tumors and in three out of 18 human cell lines; four C228T mutations in 38 ACCs (10.5%), two C228T mutations in 18 ea PGLs (11.1%), one C250T mutation in 36 GISTs (2.8%), and three C228T mutations in 16 human NBL cell lines (18.75%). No mutation was detected in PCCs, HN PGLs, neuroblastic tumors as well as ACC cell lines. TERT promoter mutations preferentially occurred in a SDH-deficient setting (P=0.01) being present in three out of 47 (6.4%) SDH-deficient tumors vs zero out of 171 (0%) SDH-intact tumors. We conclude that TERT promoter mutations occur in ACCs and ea PGLs. In addition, preliminary evidence indicates a potential association with the acquisition of TERT promoter mutations in SDH-deficient tumors.

Open access

Milena Doroszko, Marcin Chrusciel, Joanna Stelmaszewska, Tomasz Slezak, Slawomir Anisimowicz, Ursula Plöckinger, Marcus Quinkler, Marco Bonomi, Slawomir Wolczynski, Ilpo Huhtaniemi, Jorma Toppari, and Nafis A Rahman

Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11–13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.

Free access

S G Creemers, P M van Koetsveld, W W De Herder, F Dogan, G J H Franssen, R A Feelders, and L J Hofland

Chemotherapy for adrenocortical carcinoma (ACC) has limited efficacy and is accompanied by severe toxicity. This lack of effectiveness has been associated with high tumoral levels of the multidrug resistance (MDR) pump P-glycoprotein (P-gp), encoded by the MDR1 gene. In this study, effects of P-gp inhibition on the sensitivity of ACC cells to cytotoxic drugs were evaluated. MDR1 mRNA and P-gp expression were determined in human adrenal tissues and cell lines. H295R, HAC15 and SW13 cells were treated with mitotane, doxorubicin, etoposide, cisplatin and streptozotocin, with or without the P-gp inhibitors verapamil and tariquidar. Cell growth and surviving fraction of colonies were assessed. MDR1 mRNA and P-gp protein expression were lower in ACCs than in adrenocortical adenomas (P < 0.0001; P < 0.01, respectively). MDR1 and P-gp expression were positively correlated in ACC (P < 0.0001, ρ = 0.723). Mitotane, doxorubicin, cisplatin and etoposide dose dependently inhibited cell growth in H295R, HAC15 and SW13. Tariquidar, and in H295R also verapamil, increased the response of HAC15 and H295R to doxorubicin (6.3- and 7.5-fold EC50 decrease in H295R, respectively; all P < 0.0001). Sensitivity to etoposide was increased in H295R and HAC15 by verapamil and tariquidar (all P < 0.0001). Findings were confirmed when assessing colony formation. We show that cytotoxic drugs, except streptozotocin, used for ACC treatment, inhibit ACC cell growth and colony formation at clinically achievable concentrations. P-gp inhibition increases sensitivity to doxorubicin and etoposide, suggesting that MDR1 is involved in sensitivity to these drugs and could be a potential target for cytotoxic treatment improvement in ACC.

Free access

P S H Soon, A J Gill, D E Benn, A Clarkson, B G Robinson, K L McDonald, and S B Sidhu

The management of adrenocortical tumors (ACTs) is complex. The Weiss score is the present most widely used system for ACT diagnosis. An ACT is scored from 0 to 9, with a higher score correlating with increased malignancy. However, ACTs with a score of 3 can be phenotypically benign or malignant. Our objective is to use microarray profiling of a cohort of adrenocortical carcinomas (ACCs) and adrenocortical adenomas (ACAs) to identify discriminatory genes that could be used as an adjunct to the Weiss score. A cohort of Weiss score defined ACCs and ACAs were profiled using Affymetrix HGU133plus2.0 genechips. Genes with high-discriminatory power were identified by univariate and multivariate analyses and confirmed by quantitative real-time reverse transcription PCR and immunohistochemistry (IHC). The expression of IGF2, MAD2L1, and CCNB1 were significantly higher in ACCs compared with ACAs while ABLIM1, NAV3, SEPT4, and RPRM were significantly lower. Several proteins, including IGF2, MAD2L1, CCNB1, and Ki-67 had high-diagnostic accuracy in differentiating ACCs from ACAs. The best results, however, were obtained with a combination of IGF2 and Ki-67, with 96% sensitivity and 100% specificity in diagnosing ACCs. Microarray gene expression profiling accurately differentiates ACCs from ACAs. The combination of IGF2 and Ki-67 IHC is also highly accurate in distinguishing between the two groups and is particularly helpful in ACTs with Weiss score of 3.

Open access

Deniz M Özata, Stefano Caramuta, David Velázquez-Fernández, Pinar Akçakaya, Hong Xie, Anders Höög, Jan Zedenius, Martin Bäckdahl, Catharina Larsson, and Weng-Onn Lui

Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC.