Search Results

You are looking at 101 - 109 of 109 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Wiebke Fenske, Hans-Ullrich Völker, Patrick Adam, Stefanie Hahner, Sarah Johanssen, Sebastian Wortmann, Melanie Schmidt, Michael Morcos, Hans-Konrad Müller-Hermelink, Bruno Allolio, and Martin Fassnacht

Owing to the rarity of adrenocortical carcinoma (ACC) no prognostic markers have been established beyond stage and resection status. Accelerated glycolysis is a characteristic feature of cancer cells and in a variety of tumour entities key factors in glucose metabolism like glucose transporter 1 and 3 (GLUT1 and -3), transketolase like-1 enzyme (TKTL1) and pyruvate kinase type M2 (M2-PK) are overexpressed and of prognostic value. Therefore, we investigated the role of these factors in ACC. Immunohistochemical analysis was performed on tissue microarrays of paraffin-embedded tissue samples from 167 ACCs, 15 adrenal adenomas and 4 normal adrenal glands. Expression was correlated with baseline parameters and clinical outcome. GLUT1 and -3 were expressed in 33 and 17% of ACC samples respectively, but in none of the benign tumours or normal adrenals glands. By contrast, TKTL1 and M2-PK were detectable in all benign tissues and the vast majority of ACCs. GLUT1 expression was strongly associated with prognosis in univariate and multivariate analysis (P<0.01), whereas GLUT3, TKTL1 and M2-PK did not correlate with clinical outcome. Patients with strong GLUT1 staining showed a considerably higher overall mortality (hazard ratio (HR) 6.34 (95% confidence interval 3.10–12.90) compared with patients with no GLUT1 staining. When analysing patients in their early stages and advanced disease separately, similar results were obtained. HR for survival was 5.31 (1.80–15.62) in patients with metatastic ACC and in patients after radical resection the HR for disease-free survival was 6.10 (2.16–16.94). In conclusion, GLUT1 is a highly promising stage-independent, prognostic marker in ACC.

Restricted access

Chiara Verdelli, Irene Forno, Annamaria Morotti, Riccardo Maggiore, Gilberto Mari, Leonardo Vicentini, Stefano Ferrero, Elisabetta Kuhn, Valentina Vaira, and Sabrina Corbetta

Tumors of the parathyroid glands are highly vascularized and display a microRNA (miRNA) profile divergent from normal parathyroid glands (PaNs). Angiogenic miRNAs, namely miR-126-3p, miR-126-5p, and miR-296-5p, have been found downregulated in parathyroid tumors. Here, we show that miR-126-3p expression levels are reduced in parathyroid adenomas (PAds; n = 12) compared with PaNs (n = 4). In situ hybridization (ISH) of miR-126-3p and miR-296-5p in 10 PAds show that miR-126-3p is expressed by endothelial cells lining the walls of great vessels and by cells within the thin stroma surrounding acinar structures. At variance, miR-296-5p was detectable in most PAd epithelial cells. Combining ISH for miR-126-3p with immunohistochemistry for the endothelial and mesenchymal markers CD34, CD31 and α-smooth muscle actin (αSMA), we could identify that miR-126-3p is localized in the αSMA-positive thin stroma. Further, miR-126-3p-expressing cells are enriched in the CD34-positive stromal cells surrounding epithelial cell acinar structures, a cellular pattern consistent with tumor-associated myofibroblasts (TAMs). In line with this, CD34-positive cells, sorted by FACS from PAds tissues, express miR-126-3p at higher levels than CD34-negative cells, suggesting that miR-126-3p downregulation promotes the endothelial-to-αSMA+ mesenchymal transition. In human mesenchymal stem cells derived from bone marrow (hBM-MSCs), a model of TAMs, the co-culture with PAds-derived cells for 5 days decreases miR-126-3p, while it increases VEGFA expression. At variance, adrenomedullin (ADM) expression is unaffected. Finally, overexpression of the miR-126-3p mimic in both hBM-MSCs and PAds-derived explants downregulates VEGFA expression levels. In conclusion, miR-126-3p is expressed by both endothelial cells and TAMs in PAds, and its downregulation promotes neoangiogenesis, possibly through VEGFA overexpression.

Free access

S G Creemers, L J Hofland, E Korpershoek, G J H Franssen, F J van Kemenade, W W de Herder, and R A Feelders

Adrenocortical carcinoma (ACC) is a rare disease with a poor prognosis. Discrimination between ACCs and adrenocortical adenomas (ACAs) remains challenging, with the current gold standard being the Weiss score, consisting of several histopathological characteristics. However, new markers like Ki67, a marker for proliferation, and the staining of reticulins are promising not only as it comes to identifying malignancy but also as prognostic markers in patients with ACC. Currently, surgery is still the only curative treatment for ACC. Mitotane, an adrenolytic drug, is used in the adjuvant setting and in case of metastatic or advanced disease. Patients with progressive disease are frequently treated with mitotane, alone or in combination with etoposide, doxorubicine and cisplatin. Radiotherapy is indicated in selected cases. The low response rates and high toxicity of the systemic therapies emphasize the need for markers that enable the identification of responders and non-responders. Consequently, research is focusing on predictive factors varying from the expression of DNA repair genes to clinical patient characteristics. Subgroups of ACC with different prognosis have been identified based on transcriptome characteristics. As a conclusion from large molecular studies, ACCs appear to harbor many abnormalities compared to ACAs. Altered pathways driving ACC pathogenesis include the IGF, TP53 and the Wnt signaling pathway, allowing these as new potential targets for medical therapy. However, despite efforts in preclinical and clinical studies investigating efficacy of targeting these pathways, most novel therapies appear to be effective in only a subset of patients with ACC. New treatment concepts are therefore urgently needed.

Free access

Erwan Thouënnon, Alice Pierre, Yannick Tanguy, Johann Guillemot, Destiny-Love Manecka, Marlène Guérin, L'houcine Ouafik, Mihaela Muresan, Marc Klein, Jérôme Bertherat, Hervé Lefebvre, Pierre-François Plouin, Laurent Yon, and Youssef Anouar

Pheochromocytomas are catecholamine-producing tumors which are generally benign, but which can also present as or develop into malignancy. Molecular pathways of malignant transformation remain poorly understood. Pheochromocytomas express various trophic peptides which may influence tumoral cell behavior. Here, we investigated the expression of trophic amidated peptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), and adrenomedullin (AM), and their receptors in benign and malignant pheochromocytomas in order to assess their potential role in chromaffin cell tumorigenesis and malignant transformation. PACAP, NPY, and AM are expressed in the majority of pheochromocytomas studied; NPY exhibiting the highest mRNA levels relative to reference genes. Although median gene expression or peptide levels were systematically lower in malignant compared to benign tumors, no statistically significant difference was found. Among all the receptors of these peptides that were analyzed, only the AM receptor RDC1 displayed a differential expression between benign and malignant pheochromocytomas. This receptor exhibited a fourfold higher expression in malignant than in benign tumors. AM and stromal cell-derived factor 1, which has also been described as a ligand for RDC1, increased the number of human pheochromocytoma cells in primary culture and exerted anti-apoptotic activity on rat pheochromocytoma PC12 cells. In addition, RDC1 gene silencing decreased the number of viable PC12 cells. This study shows the expression of several trophic peptides and their receptors in benign and malignant pheochromocytomas, and suggests that AM and its RDC1 receptor could be involved in chromaffin cell tumorigenesis through pro-survival effects. Therefore, AM and RDC1 may represent valuable targets for the treatment of malignant pheochromocytomas.

Free access

Constanze Hantel, Sara Jung, Thomas Mussack, Martin Reincke, and Felix Beuschlein

Owing to high relapse rates and early metastatic spread, prognosis in adrenocortical carcinoma (ACC) patients remains poor, highlighting the importance of developing new treatment alternatives for them. Recently, polychemotherapy regimens including etoposide, doxorubicin, and cisplatin together with mitotane (EDP-M) have been defined as the standard treatment for late-stage disease patients. Nevertheless, the administration of conventional cytostatic drugs is associated with severe and dose-limiting side effects. In an attempt to optimize existing clinical treatment regimens, in this study, we investigated the therapeutic efficacy of EDP-M in comparison with that of a paclitaxel-modified scheme (paclitaxel, doxorubicin, cisplatin plus mitotane (PDP-M)) in preclinical in vitro and in vivo models. In addition, based on an extraordinary uptake phenomenon of liposomes in ACC cells, we further evaluated liposomal variants of these protocols (etoposide, liposomal doxorubicin, liposomal cisplatin plus mitotane (LEDP-M) and nab-paclitaxel, liposomal doxorubicin, liposomal cisplatin plus mitotane (LPDP-M)). In vitro, PDP-M was more potent in the induction of apoptosis and inhibition of cell viability as well as cell proliferation than EDP-M. Following the administration of a single therapeutic cycle, we further demonstrated that LEDP-M and LPDP-M exerted significant antitumoral effects in vivo, which were not as evident upon EDP-M and PDP-M treatments. These results were confirmed in a long-term experiment, in which the highest and sustained antitumoral effects were observed for LEDP-M. In summary, liposomal cytostatic substances could represent a promising option that deserves testing in appropriate clinical protocols for the treatment of ACC patients.

Free access

Dorota Dworakowska and Ashley B Grossman

Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder characterised by the development of multiple hamartomas in numerous organs. It is caused by mutations of two tumour suppressor genes, TSC1 on chromosome 9q34 and TSC2 on chromosome 16p13.3, which encode for hamartin and tuberin respectively. The interaction between these two proteins, the tuberin–hamartin complex, has been shown to be critical to multiple intracellular signalling pathways, especially those controlling cell growth and proliferation. TSC may affect skin, central nervous system, kidneys, heart, eyes, blood vessels, lung, bone and gastrointestinal tract. Small series and case reports have documented that in tuberous sclerosis patients many endocrine system alterations might occur, affecting the function of the pituitary, parathyroid and other neuroendocrine tissue. There have been scattered reports of the involvement of such tissue in the pathological process of TSC, but no systematic review as to whether this is a true association. We have therefore systematically assessed all available published literature in this area. We conclude that there may be an association with pituitary and parathyroid tumours, and two recent descriptions of Cushing's disease are especially intriguing. However, the evidence seems more firm in the case of islet cell tumours, particularly insulinomas. As these latter may cause changes in mental state that may be confused with the cerebral manifestations of TSC per se, it is particularly important for physicians working with these patients to be aware of the putative and indeed likely association.

Open access

Eva Hadadi and Hervé Acloque

The circadian rhythm is a major environmental regulator of plants and animal physiology. The alternation of days and nights is translated at the cell and tissue level thanks to a molecular machinery, called the circadian clock. This clock controls in particular numerous endocrine functions and its imbalances can have serious consequences on homeostasis. This is particularly true for the development of endocrine-related cancers, like breast, ovarian and prostate cancer. Circadian rhythm disorder (CRD) not only affects key hormone levels (including estrogen, melatonin, insulin, glucagon, cortisol) but also favors a pro-inflammatory and immunosuppressive phenotype in the tumour microenvironment. This particular aspect is conducive to epithelial-mesenchymal transition (EMT) of solid epithelial tumours and cancer cell dissemination. It also favors resistance to chemo- and immunotherapy. Here, we discuss the current knowledge on this crosstalk between CRD, EMT and the immune microenvironment in endocrine-related cancers and its consequences for the development of efficient therapies.

Free access

Pushpa Patel, Rowan Hardy, Vaiyapuri Sumathi, Gillian Bartle, Lars-Gunnar Kindblom, Robert Grimer, Iwona Bujalska, Paul M Stewart, Elizabeth Rabbitt, Neil J L Gittoes, and Mark S Cooper

Osteosarcoma (OS) is a primary malignant tumour of bone occurring predominantly in children and young adults. Despite chemotherapy, relapse is common and mortality remains high. Non-transformed osteoblasts are highly sensitive to glucocorticoids, which reduce proliferation and induce apoptosis. Previously, we observed that OS cells, but not normal osteoblasts, express 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). This enzyme inactivates cortisol (active) to cortisone (inactive) and expression of 11β-HSD2 renders OS cells resistant to glucocorticoids. By contrast, the related enzyme 11β-HSD1 converts cortisone to cortisol and reduces OS cell proliferation in vitro. Some synthetic glucocorticoids (e.g. dehydrodexamethasone (DHD), inactive counterpart of dexamethasone (DEX)) have been reported to be activated by 11β-HSD2. We therefore investigated expression and enzymatic activity of 11β-HSD isozymes in human OS tissue, determined whether 11β-HSD expression has prognostic value in the response to therapy, and evaluated the potential use of synthetic glucocorticoids to selectively target OS cells. OS samples expressed both 11β-HSD1 and 11β-HSD2. 11β-HSD1 expression in pretreatment biopsy specimens positively correlated with primary tumour size. Expression and activity of 11β-HSD1 in post-treatment biopsies were unrelated to the degree of tumour necrosis following chemotherapy. However, high 11β-HSD2 expression in post-treatment biopsies correlated with a poor response to therapy. OS cells that expressed 11β-HSD2 inactivated endogenous glucocorticoids; but these cells were also able to generate DEX from DHD. These results suggest that OS treatment response is related to 11β-HSD2 enzyme expression. Furthermore, OS cells expressing this enzyme could be targeted by treatment with synthetic glucocorticoids that are selectively reactivated by the enzyme.

Free access

Masanori Murakami, Takanobu Yoshimoto, Kazuhiko Nakabayashi, Yujiro Nakano, Takahiro Fukaishi, Kyoichiro Tsuchiya, Isao Minami, Ryotaro Bouchi, Kohji Okamura, Yasuhisa Fujii, Koshi Hashimoto, Ken-ichiro Hata, Kazunori Kihara, and Yoshihiro Ogawa

The pathophysiology of aldosterone-producing adenomas (APAs) has been investigated via genetic approaches and the pathogenic significance of a series of somatic mutations, including KCNJ5, has been uncovered. However, how the mutational status of an APA is associated with its molecular characteristics, including its transcriptome and methylome, has not been fully understood. This study was undertaken to explore the molecular characteristics of APAs, specifically focusing on APAs with KCNJ5 mutations as opposed to those without KCNJ5 mutations, by comparing their transcriptome and methylome status. Cortisol-producing adenomas (CPAs) were used as reference. We conducted transcriptome and methylome analyses of 29 APAs with KCNJ5 mutations, 8 APAs without KCNJ5 mutations and 5 CPAs. Genome-wide gene expression and CpG methylation profiles were obtained from RNA and DNA samples extracted from these 42 adrenal tumors. Cluster analysis of the transcriptome and methylome revealed molecular heterogeneity in APAs depending on their mutational status. DNA hypomethylation and gene expression changes in Wnt signaling and inflammatory response pathways were characteristic of APAs with KCNJ5 mutations. Comparisons between transcriptome data from our APAs and that from normal adrenal cortex obtained from the Gene Expression Omnibus suggested similarities between APAs with KCNJ5 mutations and zona glomerulosa. The present study, which is based on transcriptome and methylome analyses, indicates the molecular heterogeneity of APAs depends on their mutational status. Here, we report the unique characteristics of APAs with KCNJ5 mutations.