Search Results

You are looking at 51 - 60 of 108 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Susanna Vuorenoja, Adolfo Rivero-Müller, Adam J Ziecik, Ilpo Huhtaniemi, Jorma Toppari, and Nafis A Rahman

Novel strategies are needed for the treatment of adrenocortical tumors that are usually resistant to chemotherapy. Hecate, a 23-amino acid lytic peptide, was conjugated to the 15-amino acid (81–95) fragment of the human chorionic gonadotropin β (CGβ) chain, which would selectively kill cancer cells expressing the LH receptor (LHR) sparing the normal ones with LHR. To prove the principle that Hecate-CGβ conjugate may eradicate tumors ectopically expressing plasma membrane receptors, transgenic (TG) inhibin α-subunit promoter (inhα)/Simian Virus 40 T-antigen mice, expressing LHR in their adrenal gland tumors, were used as the experimental model. Wild-type control littermates and TG mice with adrenal tumors were treated with either Hecate or Hecate-CGβ conjugate at the age of 6.5 months for 3 weeks and killed 7 days after the last treatment. The Hecate-CGβ conjugate reduced the adrenal tumor burden significantly in TG male but not in female mice, in comparison with Hecate-treated mice. Hecate-CGβ conjugate treatment did not affect normal adrenocortical function as the serum corticosterone level between Hecate and Hecate-CGβ conjugate groups were similar. The mRNA and protein expressions of GATA-4 and LHR colocalized only in tumor area, and a significant downregulation of gene expression was found after the Hecate-CGβ conjugate in comparison with Hecate- and/or non-treated adrenal tumors by western blotting. This finding provides evidence for a selective destruction of the tumor cells by the Hecate-CGβ conjugate. Hereby, our findings support the principle that Hecate-CGβ conjugate is able to specifically destroy tumor cells that ectopically express LHR.

Free access

Anna Angelousi, Eva Kassi, Narjes Ansari-Nasiri, Harpal Randeva, Gregory Kaltsas, and George Chrousos

Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called ‘clock genes’ that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes’ epigenetic alterations, including hypermethylation of clock genes’ promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.

Free access

Constanze Hantel, Sara Jung, Thomas Mussack, Martin Reincke, and Felix Beuschlein

Owing to high relapse rates and early metastatic spread, prognosis in adrenocortical carcinoma (ACC) patients remains poor, highlighting the importance of developing new treatment alternatives for them. Recently, polychemotherapy regimens including etoposide, doxorubicin, and cisplatin together with mitotane (EDP-M) have been defined as the standard treatment for late-stage disease patients. Nevertheless, the administration of conventional cytostatic drugs is associated with severe and dose-limiting side effects. In an attempt to optimize existing clinical treatment regimens, in this study, we investigated the therapeutic efficacy of EDP-M in comparison with that of a paclitaxel-modified scheme (paclitaxel, doxorubicin, cisplatin plus mitotane (PDP-M)) in preclinical in vitro and in vivo models. In addition, based on an extraordinary uptake phenomenon of liposomes in ACC cells, we further evaluated liposomal variants of these protocols (etoposide, liposomal doxorubicin, liposomal cisplatin plus mitotane (LEDP-M) and nab-paclitaxel, liposomal doxorubicin, liposomal cisplatin plus mitotane (LPDP-M)). In vitro, PDP-M was more potent in the induction of apoptosis and inhibition of cell viability as well as cell proliferation than EDP-M. Following the administration of a single therapeutic cycle, we further demonstrated that LEDP-M and LPDP-M exerted significant antitumoral effects in vivo, which were not as evident upon EDP-M and PDP-M treatments. These results were confirmed in a long-term experiment, in which the highest and sustained antitumoral effects were observed for LEDP-M. In summary, liposomal cytostatic substances could represent a promising option that deserves testing in appropriate clinical protocols for the treatment of ACC patients.

Free access

Thomas G Papathomas, Lindsey Oudijk, Ellen C Zwarthoff, Edward Post, Floor A Duijkers, Max M van Noesel, Leo J Hofland, Patrick J Pollard, Eamonn R Maher, David F Restuccia, Richard A Feelders, Gaston J H Franssen, Henri J Timmers, Stefan Sleijfer, Wouter W de Herder, Ronald R de Krijger, Winand N M Dinjens, and Esther Korpershoek

Hotspot mutations in the promoter of the telomerase reverse transcriptase (TERT) gene have been recently reported in human cancers and proposed as a novel mechanism of telomerase activation. To explore TERT promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia, a set of 253 tumors (38 adrenocortical carcinomas (ACCs), 127 pheochromocytomas (PCCs), 18 extra-adrenal paragangliomas (ea PGLs), 37 head and neck PGLs (HN PGLs), and 33 peripheral neuroblastic tumors) was selected along with 16 human neuroblastoma (NBL) and two ACC cell lines to assess TERT promoter mutations by the Sanger sequencing method. All mutations detected were confirmed by a SNaPshot assay. Additionally, 36 gastrointestinal stromal tumors (GISTs) were added to explore an association between TERT promoter mutations and SDH deficiency. TERT promoter mutations were found in seven out of 289 tumors and in three out of 18 human cell lines; four C228T mutations in 38 ACCs (10.5%), two C228T mutations in 18 ea PGLs (11.1%), one C250T mutation in 36 GISTs (2.8%), and three C228T mutations in 16 human NBL cell lines (18.75%). No mutation was detected in PCCs, HN PGLs, neuroblastic tumors as well as ACC cell lines. TERT promoter mutations preferentially occurred in a SDH-deficient setting (P=0.01) being present in three out of 47 (6.4%) SDH-deficient tumors vs zero out of 171 (0%) SDH-intact tumors. We conclude that TERT promoter mutations occur in ACCs and ea PGLs. In addition, preliminary evidence indicates a potential association with the acquisition of TERT promoter mutations in SDH-deficient tumors.

Free access

A Falchetti and M L Brandi

Multiple Endocrine Neoplasias type 1 (MEN 1) and type 2 (MEN 2) represent complex inherited (autosomal dominant traits) syndromes characterized by occurrence of distinct proliferative disorders of endocrine tissues, varying from hyperplasia to adenoma and carcinoma.

MEN 1 syndrome is characterized by parathyroid gland, anterior pituitary and endocrine pancreas tumors. Other endocrine and non endocrine tumors, such as carcinoids, lipomas, pinealomas, adrenocortical and thyroid follicular tumors, have been also described in MEN 1 patients occurring at higher frequency than in general population (Brandi ML et al. 1987). Recently also a spinal ependymoma has been found in a patient with MEN 1 syndrome (Kato H et al 1997)

MEN 2 syndromes recognize three main clinical entities, MEN 2A, characterized by medullary thyroid carcinoma (MTC), primary hyperparathyroidism (PHPT) and pheochromocytoma (PHEO); MEN 2B that exhibits MTC, usually developing sooner than the MEN 2A- associated one, pheochromocytoma, multiple neuromas of gastroenteric mucosa, myelinated corneal nerves (Gorlin RJ et al. 1968) and a typical marphanoid habitus; and familial medullary thyroid carcinoma only (FMTC) featuring by families with at least four members with MTC and no objective evidence of pheochromocytoma and parathyroid disease on screening of affected and at-risk members, as stated by the International RET Mutation Consortium (Larsson C et al. 1994).

Acknowledgements

This work was supported by grants of the Associazione Italiana per la Ricerca sul Cancro (to MLB), from CNR/PF ACRO (INV. 95.00316 PF 39) and by MURST 60% (to MLB).

Free access

Susanna Vuorenoja, Bidut Prava Mohanty, Johanna Arola, Ilpo Huhtaniemi, Jorma Toppari, and Nafis A Rahman

Lytic peptide Hecate (23-amino acid (AA)) fused with a 15-AA fragment of human chorionic gonadotropin-β (CG-β), Hecate-CGβ conjugate (H-CGβ-c) selectively binds to and destroys tumor cells expressing LH/chorionic gonadotropin receptor (Lhcgr). Transgenic mice (6.5 month old) expressing SV40 T-antigen under the inhibin-α promoter (inhα/Tag) presenting with Lhcgr expressing adrenal tumors were treated either with H-CGβ-c, GnRH antagonist (GnRH-a), estradiol (E2; only females) or their combinations for 1 month. We expected that GnRH-a or E2 in combination with H-CGβ-c could improve the treatment efficacy especially in females by decreasing circulating LH and eliminating the potential competition of serum LH with the H-CGβ-c. GnRH-a and H-CGβ-c treatments were successful in males (adrenal weights 14±2.8 mg and 60±26 vs 237±59 mg in controls; P<0.05). Histopathologically, GnRH-a apparently destroyed the adrenal parenchyma leaving only the fibrotic capsule with few necrotic foci. In females, H-CGβ-c was totally ineffective, whereas GnRH-a (19±5 mg) or E2 (77±50 mg) significantly reduced the adrenal weights compared with controls (330±70 mg). Adrenal morphometry, cell proliferation markers, post-treatment suppression of serum progesterone, and quantitative RT-PCR of GATA-4, Lhcgr, and GATA-6 further supported the positive outcome. H-CGβ-c selectively killed the Lhcgr expressing tumor cells, whereas GnRH-a blocked tumor progression through gonadotropin suppression, emphasizing the gonadotropin dependency of these adrenocortical tumors. If extrapolated to humans, H-CGβ-c could be considered for the treatment of gonadotropin-dependent adrenal tumors in males, whereas in females gonadotropin suppression, but not H-CGβ-c, would work better.

Open access

Tiantian Liu, Taylor C Brown, C Christofer Juhlin, Adam Andreasson, Na Wang, Martin Bäckdahl, James M Healy, Manju L Prasad, Reju Korah, Tobias Carling, Dawei Xu, and Catharina Larsson

The telomerase reverse transcriptase gene (TERT) encodes the reverse transcriptase component of the telomerase complex, which is essential for telomere stabilization and cell immortalization. Recent studies have demonstrated a transcriptional activation role for the TERT promoter mutations C228T and C250T in many human cancers, as well as a role in aggressive disease with potential clinical applications. Although telomerase activation is known in adrenal tumors, the underlying mechanisms are not established. We assessed C228T and C250T TERT mutations by direct Sanger sequencing in tumors of the adrenal gland, and further evaluated potential associations with clinical parameters and telomerase activation. A total of 199 tumors were evaluated, including 34 adrenocortical carcinomas (ACC), 47 adrenocortical adenomas (ACA), 105 pheochromocytomas (PCC; ten malignant and 95 benign), and 13 abdominal paragangliomas (PGL; nine malignant and four benign). TERT expression levels were determined by quantitative RT-PCR. The C228T mutation was detected in 4/34 ACCs (12%), but not in any ACA (P=0.028). C228T was also observed in one benign PCC and in one metastatic PGL. The C250T mutation was not observed in any case. In the ACC and PGL groups, TERT mutation-positive cases exhibited TERT expression, indicating telomerase activation; however, since expression was also revealed in TERT WT cases, this could denote additional mechanisms of TERT activation. To conclude, the TERT promoter mutation C228T is a recurrent event associated with TERT expression in ACCs, but rarely occurs in PGL and PCC. The involvement of the TERT gene in ACC represents a novel mutated gene in this entity.

Free access

Elisa Roca, Alfredo Berruti, Silviu Sbiera, Ida Rapa, Ester Oneda, Paola Sperone, Cristina L Ronchi, Laura Ferrari, Salvatore Grisanti, Antonina Germano, Barbara Zaggia, Giorgio Vittorio Scagliotti, Martin Fassnacht, Marco Volante, Massimo Terzolo, and Mauro Papotti

Topoisomerase II alpha (TOP2A) and thymidylate synthase (TS) are known prognostic parameters in several tumors and also predictors of efficacy of anthracyclines, topoisomerase inhibitors and fluoropirimidines, respectively. Expression of TOP2A and TS mRNA was assessed in 98 patients with adrenocortical carcinoma (ACC) and protein expression was assessed by immunohistochemistry in a subset of 39 tumors. Ninety-two patients were radically resected for stage II–III disease and 38 of them received adjuvant mitotane. Twenty-six patients with metastatic disease received the EDP-M (etoposide, doxorubicin, Adriamycin, cisplatin plus mitotane). TOP2A and TS expression in ACC tissue was directly correlated with the clinical data. Both markers were not associated with either disease free survival (DFS) or overall survival (OS) in multivariate analyses and failed to be associated to mitotane efficacy. Disease response or stabilization to EDP-M treatment was observed in 12/17 (71%) and 1/9 (11%) patients with high and low TOP2A expressing tumors (P = 0.0039) and 9/13 (69%) and 4/13 (31%) patients with high and low TS expressing ACC, respectively (P = 0.049). High TOP2A expression was significantly associated with longer time to progression (TTP) after EDP-M. TOP2A and TS proteins assessed by immunohistochemistry significantly correlated with mRNA expression. Immunohistochemical TOP2A expression was associated with a non-significant better response and longer TTP after EDP-M. TOP2A and TS were neither prognostic nor predictive of mitotane efficacy in ACC patients. The predictive role of TOP2A expression of EDP-M activity suggests a significant contribution of Adriamycin and etoposide for the efficacy of the EDP scheme.

Free access

David J Gross, Gabriel Munter, Menachem Bitan, Tali Siegal, Alberto Gabizon, Ronny Weitzen, Ofer Merimsky, Aliza Ackerstein, Asher Salmon, Avishai Sella, and Shimon Slavin

Group-author : The Israel Glivec in Solid Tumors Study Group

Imatinib mesylate (IM), a small molecule that is a selective inhibitor of the ABL, platelet derived growth factor receptor (PDGFR-R) and stem cell ligand receptor (c-kit) tyrosine kinases (TK). IM was also found to inhibit the TK activity of BCR/ABL fusion protein produced in chronic myelogenous leukemia, with marked clinical activity against the disease. Since both PDGF-R and c-kit both having a putative role in tumorigenesis, we investigated the efficacy and safety of the use of IM in patients with endocrine tumors unresponsive to conventional therapies that expressed c-kit and/or PDGF-R (within the framework of a comprehensive phase II multi-center study of IM in patients with solid tumors). IM was initiated at a dose of 400 mg/day, with possible dose escalation within 1 week to 600 mg/day and an option to raise the dose to 800 mg/day in the event of progression and in the absence of safety concerns for a period of up to 12 months. Between September 2002 and July 2003, 15 adult patients with disseminated endocrine tumors were recruited as follows: medullary thyroid carcinoma (MTC, n = 6); adrenocortical carcinoma (ACC, n = 4); malignant pheochromocytoma (pheo, n = 2); carcinoid (non-secreting, n = 2), neuroendocrine tumor (NET, n = 1). No objective responses were observed. MTC – disease progression in 4 patients, and treatment discontinuation in 2 patients due to adverse events; ACC – disease progression in 3 patients, and treatment discontinuation in 1 patient due to severe psychiatric adverse event; Pheo – disease progression in 2 patients; Carcinoid – stable disease in 1 patient (6.5 months), and disease progression in 1 patient; NET – disease progression in 1 patient. IM does not appear to be useful for treatment of malignant endocrine tumors, also causing significant toxicity in this patient population.

Free access

Nunki Hassan, Jing Ting Zhao, Anthony Glover, Bruce G Robinson, and Stan B Sidhu

Adrenocortical carcinoma (ACC) has high recurrence rates and poor prognosis with limited response to conventional cancer therapy. Recent contributions of high-throughput transcriptomic profiling identified microRNA-497 (miR-497) as significantly underexpressed, while lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) as overexpressed in ACC. miR-497 is located in the chromosomal region 17p13.1, in which there is a high frequency of loss of heterozygosity in ACC. We aim to investigate the interaction of miR-497 and MALAT1 in ACC and its functional roles in the process of tumourigenesis. In this study, we demonstrated miR-497 post-transcriptionally repressed MALAT1 while MALAT1 also competes for miR-497 binding to its molecular target, EIF4E (eukaryotic translation initiation factor 4E). We showed that overexpression of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell cycle arrest through downregulation of EIF4E expression. Furthermore, MALAT1 directly binds to SFPQ (splicing factor proline and glutamine rich) protein, indicating its multifaceted roles in ACC pathophysiology. This is the first study to identify the feedback axis of miR-497-MALAT1/EIF4E in ACC tumourigenesis, providing novel insights into the molecular functions of noncoding RNAs in ACC.