Search Results

You are looking at 61 - 70 of 106 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

T M A Kerkhofs, M H T Ettaieb, I G C Hermsen, and H R Haak

Cancer of the adrenal cortex (ACC) is a rare endocrine malignancy with limited treatment options. Patients typically present with autonomous hormonal overproduction and/or a large abdominal mass. Hormonal assays and medical imaging can be diagnostic, but urinary steroid profiling might be a more sensitive technique to assess malignancy in adrenal tumours. The stage of the disease at diagnosis is the most important prognostic factor. The current staging system needs refinement, especially to separate aggressive from indolent disease in stage IV patients and to select patients who need adjuvant treatment after complete surgical resection. Regarding the latter, assessing the proliferation index Ki-67 seems the best tool currently available. Genomic profiling is expected to become of clinical relevance in the future. Medical therapy is centred on the adrenolytic drug mitotane, which carries considerable toxicity and is not easy to manage. Its tolerability and long plasma level build-up phase may be improved by therapeutic drug monitoring based on pharmacokinetic modelling and intensive counselling of patients. Current chemotherapy regimens can offer disease stabilization in about 50% of patients, but an objective response should be expected in <25%. Research on targeted therapy and immunotherapy is difficult in this rare disease with often heavily pre-treated patients and has not yet been successful. Quality of care should be ensured by treating patients in centres with established experience in multidisciplinary oncologic care, who adhere to prevailing guidelines and state-of-the-art in diagnostic and treatment concepts. International collaboration in fundamental research and clinical trials is the key to further elucidate the pathogenesis and to improve patient care.

Free access

Adwitiya Kar, Yu Zhang, Betelehem W Yacob, Jordan Saeed, Kenneth D Tompkins, Stacey M Bagby, Todd M Pitts, Hilary Somerset, Stephen Leong, Margaret E Wierman, and Katja Kiseljak-Vassiliades

Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.

Free access

Antonio M Lerario, Kazutaka Nanba, Amy R Blinder, Sachiko Suematsu, Masao Omura, Tetsuo Nishikawa, Thomas J Giordano, William E Rainey, and Tobias Else

Somatic variants in genes that regulate intracellular ion homeostasis have been identified in aldosterone-producing adenomas (APAs). Although the mechanisms leading to increased aldosterone production in APA cells have been well studied, the molecular events that cause cell proliferation and tumor formation are poorly understood. In the present study, we have performed whole-exome sequencing (WES) to characterize the landscape of somatic alterations in a homogeneous series of APA with pathogenic KCNJ5 variants. In the WES analysis on 11 APAs, 84 exonic somatic events were called by 3 different somatic callers. Besides the KCNJ5 gene, only two genes (MED13 and ZNF669) harbored somatic variants in more than one APA. Unlike adrenocortical carcinomas, no chromosomal instability was observed by the somatic copy-number alteration and loss of heterozygosity analyses. The estimated tumor purity ranged from 0.35 to 0.67, suggesting a significant proportion of normal cell infiltration. Based on the results of PureCN analysis, the KCNJ5 variants appear to be clonal. In conclusion, in addition to KCNJ5 somatic pathogenic variants, no significant somatic event that would obviously explain proliferation or tumor growth was observed in our homogeneous cohort of KCNJ5-mutated APA. The molecular mechanisms causing APA growth and tumorigenesis remain to be elucidated.

Free access

Michael Solarski, Fabio Rotondo, William D Foulkes, John R Priest, Luis V Syro, Henriett Butz, Michael D Cusimano, and Kalman Kovacs

In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.

Restricted access

S G Creemers, R A Feelders, N Valdes, C L Ronchi, M Volante, B M van Hemel, M Luconi, M H T Ettaieb, M Mannelli, M D Chiara, M Fassnacht, M Papotti, M N Kerstens, G Nesi, H R Haak, F J van Kemenade, and L J Hofland

Adrenocortical carcinoma (ACC) is diagnosed using the histopathological Weiss score (WS), but remains clinically elusive unless it has metastasized or grows locally invasive. Previously, we proposed the objective IGF2 methylation score as diagnostic tool for ACC. This multicenter European cohort study validates these findings. Patient and tumor characteristics were obtained from adrenocortical tumor patients. DNA was isolated from frozen specimens, where after DMR2, CTCF3, and H19 were pyrosequenced. The predictive value of the methylation score for malignancy, defined by the WS or metastasis development, was assessed using receiver operating characteristic curves and logistic and Cox regression analyses. Seventy-six ACC patients and 118 patients with adrenocortical adenomas were included from seven centers. The methylation score and tumor size were independently associated with the pathological ACC diagnosis (OR 3.756 95% CI 2.224–6.343; OR 1.467 95% CI 1.202–1.792, respectively; Hosmer–Lemeshow test P = 0.903), with an area under the curve (AUC) of 0.957 (95% CI 0.930–0.984). The methylation score alone resulted in an AUC of 0.910 (95% CI 0.866–0.952). Cox regression analysis revealed that the methylation score, WS and tumor size predicted development of metastases in univariate analysis. In multivariate analysis, only the WS predicted development of metastasis (OR 1.682 95% CI 1.285–2.202; P < 0.001). In conclusion, we validated the high diagnostic accuracy of the IGF2 methylation score for diagnosing ACC in a multicenter European cohort study. Considering the known limitations of the WS, the objective IGF2 methylation score could potentially provide extra guidance on decisions on postoperative strategies in adrenocortical tumor patients.

Free access

Elisa Roca, Alfredo Berruti, Silviu Sbiera, Ida Rapa, Ester Oneda, Paola Sperone, Cristina L Ronchi, Laura Ferrari, Salvatore Grisanti, Antonina Germano, Barbara Zaggia, Giorgio Vittorio Scagliotti, Martin Fassnacht, Marco Volante, Massimo Terzolo, and Mauro Papotti

Topoisomerase II alpha (TOP2A) and thymidylate synthase (TS) are known prognostic parameters in several tumors and also predictors of efficacy of anthracyclines, topoisomerase inhibitors and fluoropirimidines, respectively. Expression of TOP2A and TS mRNA was assessed in 98 patients with adrenocortical carcinoma (ACC) and protein expression was assessed by immunohistochemistry in a subset of 39 tumors. Ninety-two patients were radically resected for stage II–III disease and 38 of them received adjuvant mitotane. Twenty-six patients with metastatic disease received the EDP-M (etoposide, doxorubicin, Adriamycin, cisplatin plus mitotane). TOP2A and TS expression in ACC tissue was directly correlated with the clinical data. Both markers were not associated with either disease free survival (DFS) or overall survival (OS) in multivariate analyses and failed to be associated to mitotane efficacy. Disease response or stabilization to EDP-M treatment was observed in 12/17 (71%) and 1/9 (11%) patients with high and low TOP2A expressing tumors (P = 0.0039) and 9/13 (69%) and 4/13 (31%) patients with high and low TS expressing ACC, respectively (P = 0.049). High TOP2A expression was significantly associated with longer time to progression (TTP) after EDP-M. TOP2A and TS proteins assessed by immunohistochemistry significantly correlated with mRNA expression. Immunohistochemical TOP2A expression was associated with a non-significant better response and longer TTP after EDP-M. TOP2A and TS were neither prognostic nor predictive of mitotane efficacy in ACC patients. The predictive role of TOP2A expression of EDP-M activity suggests a significant contribution of Adriamycin and etoposide for the efficacy of the EDP scheme.

Free access

Cristina L Ronchi, Silviu Sbiera, Barbara Altieri, Sonja Steinhauer, Vanessa Wild, Michaela Bekteshi, Matthias Kroiss, Martin Fassnacht, and Bruno Allolio

Previous SNP array analyses have revealed genomic alterations of the Notch pathway as being the most frequent abnormality in adrenocortical tumors (ACTs). The aim of the present study was to evaluate the expression of components of Notch signaling in ACTs and to correlate them with clinical outcome. The mRNA expression of JAG1, NOTCH1, and selected target genes of NOTCH1 (HES1, HES5, and HEY2) was evaluated in 80 fresh frozen samples (28 normal adrenal glands (NAGs), 24 adenomas (ACAs), and 28 carcinomas (ACCs)) by quantitative RT-PCR. Immunohistochemistry was performed in 221 tissues on paraffin slides (16 NAGs, 27 ACAs, and 178 ACCs) for JAG1, activated NOTCH1 (aNOTCH1), and HEY2. An independent ACC validation cohort (n=77) was then also investigated. HEY2 mRNA expression was higher in ACCs than it was in ACAs (P<0.05). The protein expression of all of the factors was high (H-score 2–3) in a larger proportion of ACCs as compared to ACAs and NAGs (JAG1 in 27, 15, and 10%; aNOTCH1 in 13, 8, and 0%; HEY2 in 66, 61, and 33% respectively, all P<0.001). High JAG1 expression was associated with earlier tumor stages and lower numbers of metastases in ACCs (both P=0.08) and favorably impacted overall and progression-free survival (PFS) (131 vs 30 months, hazard ratio (HR) 0.45, and 37 vs 9 months, HR 0.51, both P<0.005). This impact on overall survival (OS) was confirmed in the validation cohort. No such association was observed for aNOTCH1 or HEY2. In conclusion, different components of the Notch1 signaling pathway are overexpressed in ACCs, which suggests a role for the pathway in malignant transformation. However, JAG1 is overexpressed in a subgroup of ACCs with a better clinical outcome.

Free access

S G Creemers, L J Hofland, E Korpershoek, G J H Franssen, F J van Kemenade, W W de Herder, and R A Feelders

Adrenocortical carcinoma (ACC) is a rare disease with a poor prognosis. Discrimination between ACCs and adrenocortical adenomas (ACAs) remains challenging, with the current gold standard being the Weiss score, consisting of several histopathological characteristics. However, new markers like Ki67, a marker for proliferation, and the staining of reticulins are promising not only as it comes to identifying malignancy but also as prognostic markers in patients with ACC. Currently, surgery is still the only curative treatment for ACC. Mitotane, an adrenolytic drug, is used in the adjuvant setting and in case of metastatic or advanced disease. Patients with progressive disease are frequently treated with mitotane, alone or in combination with etoposide, doxorubicine and cisplatin. Radiotherapy is indicated in selected cases. The low response rates and high toxicity of the systemic therapies emphasize the need for markers that enable the identification of responders and non-responders. Consequently, research is focusing on predictive factors varying from the expression of DNA repair genes to clinical patient characteristics. Subgroups of ACC with different prognosis have been identified based on transcriptome characteristics. As a conclusion from large molecular studies, ACCs appear to harbor many abnormalities compared to ACAs. Altered pathways driving ACC pathogenesis include the IGF, TP53 and the Wnt signaling pathway, allowing these as new potential targets for medical therapy. However, despite efforts in preclinical and clinical studies investigating efficacy of targeting these pathways, most novel therapies appear to be effective in only a subset of patients with ACC. New treatment concepts are therefore urgently needed.

Free access

D E Schteingart, G M Doherty, P G Gauger, T J Giordano, G D Hammer, M Korobkin, and F P Worden

Adrenocortical carcinomas are rare, highly malignant tumors that account for only 0.2% of deaths due to cancer. Given the limited number of patients seen in most medical centers with this diagnosis, series usually reported are small and clinical trials not randomized or blinded. In an attempt to answer important questions concerning the management of patients with adrenal cancer, a consensus conference was organized and held at the University of Michigan in Ann Arbor, MI, 11–13 September 2003, with the participation of an international group of physicians who had reported on the largest series of patients with this disease and who had recognized basic and clinical research expertise in adrenal cortical cancer. Totally 43 questions were addressed by the presenters and recommendations discussed in plenary and breakout sessions. Evidence for the recommendations of this conference was at the 2–4+ level and based on available literature and participants’ experience.

In addition to setting up guidelines in specific areas of the diagnosis and treatment of adrenal cancer, the conference recommended and initiated the planning of an international prospective trial for treatment of patients with adrenal cancer in stages III and IV. In terms of new therapies, first trials of dendritic cell therapy in human subjects with adrenal cancer have been started, but it is too early to comment on efficacy. Different strategies of immunotherapy, including DNA vaccination are currently being tried in animal models. There are no clinical gene therapy trials for human adrenal cortical cancer. The adrenals are a preferred target for adenovirus and the results of gene therapy in preclinical studies are promising. In addition, there is evidence that histone deacetylase inhibitors can further enhance the rate of adenoviral infectivity in human adrenal cancer cells. Testing of retroviral vectors, non-viral vectors, small interfering RNA technology, and combined approaches could be performed in various laboratories. Anti-angiogenic substances have only been applied in preclinical studies. The use of these and other agents in the treatment of adrenal cancer should be hypothesis-driven and based on a thorough analysis of tumor biology.

Free access

Anna Angelousi, Eva Kassi, Narjes Ansari-Nasiri, Harpal Randeva, Gregory Kaltsas, and George Chrousos

Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called ‘clock genes’ that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes’ epigenetic alterations, including hypermethylation of clock genes’ promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.