Search Results

You are looking at 71 - 80 of 108 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

D E Schteingart, G M Doherty, P G Gauger, T J Giordano, G D Hammer, M Korobkin, and F P Worden

Adrenocortical carcinomas are rare, highly malignant tumors that account for only 0.2% of deaths due to cancer. Given the limited number of patients seen in most medical centers with this diagnosis, series usually reported are small and clinical trials not randomized or blinded. In an attempt to answer important questions concerning the management of patients with adrenal cancer, a consensus conference was organized and held at the University of Michigan in Ann Arbor, MI, 11–13 September 2003, with the participation of an international group of physicians who had reported on the largest series of patients with this disease and who had recognized basic and clinical research expertise in adrenal cortical cancer. Totally 43 questions were addressed by the presenters and recommendations discussed in plenary and breakout sessions. Evidence for the recommendations of this conference was at the 2–4+ level and based on available literature and participants’ experience.

In addition to setting up guidelines in specific areas of the diagnosis and treatment of adrenal cancer, the conference recommended and initiated the planning of an international prospective trial for treatment of patients with adrenal cancer in stages III and IV. In terms of new therapies, first trials of dendritic cell therapy in human subjects with adrenal cancer have been started, but it is too early to comment on efficacy. Different strategies of immunotherapy, including DNA vaccination are currently being tried in animal models. There are no clinical gene therapy trials for human adrenal cortical cancer. The adrenals are a preferred target for adenovirus and the results of gene therapy in preclinical studies are promising. In addition, there is evidence that histone deacetylase inhibitors can further enhance the rate of adenoviral infectivity in human adrenal cancer cells. Testing of retroviral vectors, non-viral vectors, small interfering RNA technology, and combined approaches could be performed in various laboratories. Anti-angiogenic substances have only been applied in preclinical studies. The use of these and other agents in the treatment of adrenal cancer should be hypothesis-driven and based on a thorough analysis of tumor biology.

Free access

Cristina L Ronchi, Silviu Sbiera, Luitgard Kraus, Sebastian Wortmann, Sarah Johanssen, Patrick Adam, Holger S Willenberg, Stefanie Hahner, Bruno Allolio, and Martin Fassnacht

Therapeutic progress in adrenocortical carcinoma (ACC) is severely hampered by its low incidence. Platinum-based chemotherapies are the most effective cytotoxic treatment regimens in ACC but response rates remain <50%. In other tumor entities, expression of excision repair cross complementing group 1 (ERCC1) predicts resistance to platinum compounds. Therefore, we correlated ERCC1 protein expression and clinical outcome. We have retrolectively established adrenal tissue microarrays and analyzed prospectively samples from 163 ACCs, 15 benign adrenal adenomas, and 8 normal adrenal glands by immunohistochemistry for ERCC1 protein expression. Detailed clinical data were available by the German ACC Registry. ERCC1 protein was highly expressed in all normal adrenal glands, 14 benign tumors (93%) and in 75 ACCs (47%). In ACC, no differences in baseline parameters were found between patients with and without ERCC1 expression. Detection of ERCC1 was not correlated with survival in patients who never received platinum-based chemotherapy. In platinum-treated patients (n=45), objective response to platinum compounds was observed in 3/21 patients (14.3%) with high ERCC1 expression and in 7/24 patients (29.2%) with low ERCC1 expression (P=0.23). ERCC1 expression was strongly correlated with overall survival after platinum treatment (median: eight months in patients with high ERCC1 versus 24 months in low ERCC1 expression, hazard ratio (HR) 2.95 (95% confidence interval (CI) 1.4–6.2), P=0.004). Multivariate analysis confirmed that high ERCC1 expression was a predictive factor for poor prognosis in platinum treated patients (HR 2.2, 95% CI 1.0–4.5, P=0.038). Our findings suggest that ERCC1 expression is the first factor for predicting survival in ACC patients treated with platinum-based chemotherapy.

Free access

T M A Kerkhofs, M H T Ettaieb, I G C Hermsen, and H R Haak

Cancer of the adrenal cortex (ACC) is a rare endocrine malignancy with limited treatment options. Patients typically present with autonomous hormonal overproduction and/or a large abdominal mass. Hormonal assays and medical imaging can be diagnostic, but urinary steroid profiling might be a more sensitive technique to assess malignancy in adrenal tumours. The stage of the disease at diagnosis is the most important prognostic factor. The current staging system needs refinement, especially to separate aggressive from indolent disease in stage IV patients and to select patients who need adjuvant treatment after complete surgical resection. Regarding the latter, assessing the proliferation index Ki-67 seems the best tool currently available. Genomic profiling is expected to become of clinical relevance in the future. Medical therapy is centred on the adrenolytic drug mitotane, which carries considerable toxicity and is not easy to manage. Its tolerability and long plasma level build-up phase may be improved by therapeutic drug monitoring based on pharmacokinetic modelling and intensive counselling of patients. Current chemotherapy regimens can offer disease stabilization in about 50% of patients, but an objective response should be expected in <25%. Research on targeted therapy and immunotherapy is difficult in this rare disease with often heavily pre-treated patients and has not yet been successful. Quality of care should be ensured by treating patients in centres with established experience in multidisciplinary oncologic care, who adhere to prevailing guidelines and state-of-the-art in diagnostic and treatment concepts. International collaboration in fundamental research and clinical trials is the key to further elucidate the pathogenesis and to improve patient care.

Free access

Debbie L Hay, Christopher S Walker, and David R Poyner

Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the ‘ADMR’), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

Open access

Helene Myrtue Nielsen, Alexandre How-Kit, Carole Guerin, Frederic Castinetti, Hans Kristian Moen Vollan, Catherine De Micco, Antoine Daunay, David Taieb, Peter Van Loo, Celine Besse, Vessela N Kristensen, Lise Lotte Hansen, Anne Barlier, Frederic Sebag, and Jörg Tost

Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof.

Free access

S G Creemers, L J Hofland, E Korpershoek, G J H Franssen, F J van Kemenade, W W de Herder, and R A Feelders

Adrenocortical carcinoma (ACC) is a rare disease with a poor prognosis. Discrimination between ACCs and adrenocortical adenomas (ACAs) remains challenging, with the current gold standard being the Weiss score, consisting of several histopathological characteristics. However, new markers like Ki67, a marker for proliferation, and the staining of reticulins are promising not only as it comes to identifying malignancy but also as prognostic markers in patients with ACC. Currently, surgery is still the only curative treatment for ACC. Mitotane, an adrenolytic drug, is used in the adjuvant setting and in case of metastatic or advanced disease. Patients with progressive disease are frequently treated with mitotane, alone or in combination with etoposide, doxorubicine and cisplatin. Radiotherapy is indicated in selected cases. The low response rates and high toxicity of the systemic therapies emphasize the need for markers that enable the identification of responders and non-responders. Consequently, research is focusing on predictive factors varying from the expression of DNA repair genes to clinical patient characteristics. Subgroups of ACC with different prognosis have been identified based on transcriptome characteristics. As a conclusion from large molecular studies, ACCs appear to harbor many abnormalities compared to ACAs. Altered pathways driving ACC pathogenesis include the IGF, TP53 and the Wnt signaling pathway, allowing these as new potential targets for medical therapy. However, despite efforts in preclinical and clinical studies investigating efficacy of targeting these pathways, most novel therapies appear to be effective in only a subset of patients with ACC. New treatment concepts are therefore urgently needed.

Free access

Wiebke Fenske, Hans-Ullrich Völker, Patrick Adam, Stefanie Hahner, Sarah Johanssen, Sebastian Wortmann, Melanie Schmidt, Michael Morcos, Hans-Konrad Müller-Hermelink, Bruno Allolio, and Martin Fassnacht

Owing to the rarity of adrenocortical carcinoma (ACC) no prognostic markers have been established beyond stage and resection status. Accelerated glycolysis is a characteristic feature of cancer cells and in a variety of tumour entities key factors in glucose metabolism like glucose transporter 1 and 3 (GLUT1 and -3), transketolase like-1 enzyme (TKTL1) and pyruvate kinase type M2 (M2-PK) are overexpressed and of prognostic value. Therefore, we investigated the role of these factors in ACC. Immunohistochemical analysis was performed on tissue microarrays of paraffin-embedded tissue samples from 167 ACCs, 15 adrenal adenomas and 4 normal adrenal glands. Expression was correlated with baseline parameters and clinical outcome. GLUT1 and -3 were expressed in 33 and 17% of ACC samples respectively, but in none of the benign tumours or normal adrenals glands. By contrast, TKTL1 and M2-PK were detectable in all benign tissues and the vast majority of ACCs. GLUT1 expression was strongly associated with prognosis in univariate and multivariate analysis (P<0.01), whereas GLUT3, TKTL1 and M2-PK did not correlate with clinical outcome. Patients with strong GLUT1 staining showed a considerably higher overall mortality (hazard ratio (HR) 6.34 (95% confidence interval 3.10–12.90) compared with patients with no GLUT1 staining. When analysing patients in their early stages and advanced disease separately, similar results were obtained. HR for survival was 5.31 (1.80–15.62) in patients with metatastic ACC and in patients after radical resection the HR for disease-free survival was 6.10 (2.16–16.94). In conclusion, GLUT1 is a highly promising stage-independent, prognostic marker in ACC.

Free access

Erwan Thouënnon, Alice Pierre, Yannick Tanguy, Johann Guillemot, Destiny-Love Manecka, Marlène Guérin, L'houcine Ouafik, Mihaela Muresan, Marc Klein, Jérôme Bertherat, Hervé Lefebvre, Pierre-François Plouin, Laurent Yon, and Youssef Anouar

Pheochromocytomas are catecholamine-producing tumors which are generally benign, but which can also present as or develop into malignancy. Molecular pathways of malignant transformation remain poorly understood. Pheochromocytomas express various trophic peptides which may influence tumoral cell behavior. Here, we investigated the expression of trophic amidated peptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), and adrenomedullin (AM), and their receptors in benign and malignant pheochromocytomas in order to assess their potential role in chromaffin cell tumorigenesis and malignant transformation. PACAP, NPY, and AM are expressed in the majority of pheochromocytomas studied; NPY exhibiting the highest mRNA levels relative to reference genes. Although median gene expression or peptide levels were systematically lower in malignant compared to benign tumors, no statistically significant difference was found. Among all the receptors of these peptides that were analyzed, only the AM receptor RDC1 displayed a differential expression between benign and malignant pheochromocytomas. This receptor exhibited a fourfold higher expression in malignant than in benign tumors. AM and stromal cell-derived factor 1, which has also been described as a ligand for RDC1, increased the number of human pheochromocytoma cells in primary culture and exerted anti-apoptotic activity on rat pheochromocytoma PC12 cells. In addition, RDC1 gene silencing decreased the number of viable PC12 cells. This study shows the expression of several trophic peptides and their receptors in benign and malignant pheochromocytomas, and suggests that AM and its RDC1 receptor could be involved in chromaffin cell tumorigenesis through pro-survival effects. Therefore, AM and RDC1 may represent valuable targets for the treatment of malignant pheochromocytomas.

Free access

Alfred King-yin Lam

Adrenal lipomatous tumour is a group of adrenal tumours with a significant component of adipose tissue. According to the current World Health Organization (WHO) classification of tumours of endocrine organs, adrenal myelolipoma is the only entity amongst the group of tumours being described. In the literature, other more recently documented adrenal lipomatous tumours included 24 lipomas, 32 teratomas and 16 angiomyolipomas. Rare fatty tumours of the adrenal gland comprised liposarcoma, hibernoma, adrenocortical tumours with fat component and rare adrenal tumours with fat component. Myelolipoma comprises approximately 3% of primary adrenal tumour. It is noted more commonly in females and in the right adrenal gland. Approximately 40 bilateral myelolipomas were reported. The tumour is most frequently recorded in patients between fifth and seventh decades of life. Adrenal lipomas are often seen in males and in the right adrenal gland. They were commonly noted in patients in the sixth decade of life. The diagnosis could only be possible on examination of the surgically removed specimen. Adrenal teratomas were more common in females and with a bimodal age distribution. Slightly over 60% of the patients with adrenal teratoma are symptomatic. Adrenal angiomyolipomas were often symptomatic, more common in females and in the fifth decades of life. To conclude, adrenal lipomatous tumour is uncommon. They are often benign and non-functional. It is important to recognize the features of this group of lipomatous tumours in the adrenal gland as they are being detected on increasing incidence as a result of the wide-spread use of modern imaging modalities.

Free access

S G Creemers, P M van Koetsveld, W W De Herder, F Dogan, G J H Franssen, R A Feelders, and L J Hofland

Chemotherapy for adrenocortical carcinoma (ACC) has limited efficacy and is accompanied by severe toxicity. This lack of effectiveness has been associated with high tumoral levels of the multidrug resistance (MDR) pump P-glycoprotein (P-gp), encoded by the MDR1 gene. In this study, effects of P-gp inhibition on the sensitivity of ACC cells to cytotoxic drugs were evaluated. MDR1 mRNA and P-gp expression were determined in human adrenal tissues and cell lines. H295R, HAC15 and SW13 cells were treated with mitotane, doxorubicin, etoposide, cisplatin and streptozotocin, with or without the P-gp inhibitors verapamil and tariquidar. Cell growth and surviving fraction of colonies were assessed. MDR1 mRNA and P-gp protein expression were lower in ACCs than in adrenocortical adenomas (P < 0.0001; P < 0.01, respectively). MDR1 and P-gp expression were positively correlated in ACC (P < 0.0001, ρ = 0.723). Mitotane, doxorubicin, cisplatin and etoposide dose dependently inhibited cell growth in H295R, HAC15 and SW13. Tariquidar, and in H295R also verapamil, increased the response of HAC15 and H295R to doxorubicin (6.3- and 7.5-fold EC50 decrease in H295R, respectively; all P < 0.0001). Sensitivity to etoposide was increased in H295R and HAC15 by verapamil and tariquidar (all P < 0.0001). Findings were confirmed when assessing colony formation. We show that cytotoxic drugs, except streptozotocin, used for ACC treatment, inhibit ACC cell growth and colony formation at clinically achievable concentrations. P-gp inhibition increases sensitivity to doxorubicin and etoposide, suggesting that MDR1 is involved in sensitivity to these drugs and could be a potential target for cytotoxic treatment improvement in ACC.