Search Results

You are looking at 81 - 90 of 108 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Open access

Roland Pfoh, Ira Kay Lacdao, and Vivian Saridakis

Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure–function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.

Free access

Cristina L Ronchi, Silviu Sbiera, Luitgard Kraus, Sebastian Wortmann, Sarah Johanssen, Patrick Adam, Holger S Willenberg, Stefanie Hahner, Bruno Allolio, and Martin Fassnacht

Therapeutic progress in adrenocortical carcinoma (ACC) is severely hampered by its low incidence. Platinum-based chemotherapies are the most effective cytotoxic treatment regimens in ACC but response rates remain <50%. In other tumor entities, expression of excision repair cross complementing group 1 (ERCC1) predicts resistance to platinum compounds. Therefore, we correlated ERCC1 protein expression and clinical outcome. We have retrolectively established adrenal tissue microarrays and analyzed prospectively samples from 163 ACCs, 15 benign adrenal adenomas, and 8 normal adrenal glands by immunohistochemistry for ERCC1 protein expression. Detailed clinical data were available by the German ACC Registry. ERCC1 protein was highly expressed in all normal adrenal glands, 14 benign tumors (93%) and in 75 ACCs (47%). In ACC, no differences in baseline parameters were found between patients with and without ERCC1 expression. Detection of ERCC1 was not correlated with survival in patients who never received platinum-based chemotherapy. In platinum-treated patients (n=45), objective response to platinum compounds was observed in 3/21 patients (14.3%) with high ERCC1 expression and in 7/24 patients (29.2%) with low ERCC1 expression (P=0.23). ERCC1 expression was strongly correlated with overall survival after platinum treatment (median: eight months in patients with high ERCC1 versus 24 months in low ERCC1 expression, hazard ratio (HR) 2.95 (95% confidence interval (CI) 1.4–6.2), P=0.004). Multivariate analysis confirmed that high ERCC1 expression was a predictive factor for poor prognosis in platinum treated patients (HR 2.2, 95% CI 1.0–4.5, P=0.038). Our findings suggest that ERCC1 expression is the first factor for predicting survival in ACC patients treated with platinum-based chemotherapy.

Free access

Nunki Hassan, Jing Ting Zhao, Anthony Glover, Bruce G Robinson, and Stan B Sidhu

Adrenocortical carcinoma (ACC) has high recurrence rates and poor prognosis with limited response to conventional cancer therapy. Recent contributions of high-throughput transcriptomic profiling identified microRNA-497 (miR-497) as significantly underexpressed, while lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) as overexpressed in ACC. miR-497 is located in the chromosomal region 17p13.1, in which there is a high frequency of loss of heterozygosity in ACC. We aim to investigate the interaction of miR-497 and MALAT1 in ACC and its functional roles in the process of tumourigenesis. In this study, we demonstrated miR-497 post-transcriptionally repressed MALAT1 while MALAT1 also competes for miR-497 binding to its molecular target, EIF4E (eukaryotic translation initiation factor 4E). We showed that overexpression of miR-497 and silencing of MALAT1 suppressed cellular proliferation and induced cell cycle arrest through downregulation of EIF4E expression. Furthermore, MALAT1 directly binds to SFPQ (splicing factor proline and glutamine rich) protein, indicating its multifaceted roles in ACC pathophysiology. This is the first study to identify the feedback axis of miR-497-MALAT1/EIF4E in ACC tumourigenesis, providing novel insights into the molecular functions of noncoding RNAs in ACC.

Free access

Anand Pathak, Douglas R Stewart, Fabio R Faucz, Paraskevi Xekouki, Sara Bass, Aurelie Vogt, Xijun Zhang, Joseph Boland, Meredith Yeager, Jennifer T Loud, Katherine L Nathanson, Katherine A McGlynn, Constantine A Stratakis, Mark H Greene, and Lisa Mirabello

Germline inactivating mutations of isoform 4 of phosphodiesterase (PDE) 11A (coded by the PDE11A gene) have been associated with familial adrenocortical tumors and familial testicular cancer. Testicular tissue is unique in expressing all four isoforms of PDE11A. In a prior candidate gene study of 94 familial testicular germ cell tumor (TGCT) subjects, we identified a significant association between the presence of functionally abnormal variants in PDE11A and familial TGCT risk. To validate this novel observation, we sequenced the PDE11A coding region in 259 additional TGCT patients (both familial and sporadic) and 363 controls. We identified 55 PDE11A variants: 20 missense, four splice-site, two nonsense, seven synonymous, and 22 intronic. Ten missense variants were novel; nine occurred in transcript variant 4 and one in transcript variant 3. Five rare mutations (p.F258Y, p.G291R, p.V820M, p.R545X, and p.K568R) were present only in cases and were significantly more common in cases vs controls (P=0.0037). The latter two novel variants were functionally characterized and shown to be functionally inactivating, resulting in reduced PDE activity and increased cAMP levels. In further analysis of this cohort, we focused on white participants only to minimize confounding due to population stratification. This study builds upon our prior reports implicating PDE11A variants in familial TGCT, provides the first independent validation of those findings, extends that work to sporadic testicular cancer, demonstrates that these variants are uncommonly but reproducibly associated with TGCT, and refines our understanding regarding which specific inactivating PDE11A variants are most likely to be associated with TGCT risk.

Free access

Vassiliki Kotoula, Elias Sozopoulos, Helen Litsiou, Galinos Fanourakis, Triantafyllia Koletsa, Gerassimos Voutsinas, Sophia Tseleni-Balafouta, Constantine S Mitsiades, Axel Wellmann, and Nicholas Mitsiades

The serine/threonine kinase B-Raf plays a key role in the Ras/Raf/MEK/ERK pathway that relays extracellular signals for cell proliferation and survival. Several types of human malignancies harbor activating BRAF mutations, most frequently a V600E substitution. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase (TK) receptor that mediates proliferation and survival signaling, is expressed in a wide variety of normal and neoplastic tissues. EGFR inhibitors have produced objective responses in patients with non-small cell lung carcinomas harboring activating EGFR TK domain somatic mutations. We evaluated the presence of mutations in BRAF (exons 11 and 15), KRAS (exons 1 and 2), NRAS (exons 1 and 2), and EGFR (exons 18–21) in adrenal carcinomas (35 tumor specimens and two cell lines) by DNA sequencing. BRAF mutations were found in two carcinomas (5.7%). Four carcinomas (11.4%) carried EGFR TK domain mutations. One specimen carried a KRAS mutation, and another carried two NRAS mutations. No mutations were found in the two adrenocortical cell lines. BRAF- and EGFR-mutant tumor specimens exhibited stronger immunostaining for the phosphorylated forms of the MEK and ERK kinases than their wild-type counterparts. EGFR-mutant carcinomas exhibited increased phosphorylation of EGFR (Tyr 992) compared with wild-type carcinomas. We conclude that BRAF, RAS, and EGFR mutations occur in a subset of human adrenocortical carcinomas. Inhibitors of the Ras/Raf/MEK/ERK and EGFR pathways represent candidate targeted therapies for future clinical trials in carefully selected patients with adrenocortical carcinomas harboring respective activating mutations.

Free access

Meenu Jain, Lisa Zhang, Mei He, Ya-Qin Zhang, Min Shen, and Electron Kebebew

Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy with no effective therapy for patients with unresectable disease. The aim of the current study was i) to evaluate TOP2A expression and function in human adrenocortical neoplasm and ACC cells and ii) to determine the anticancer activity of agents that target TOP2A. TOP2A mRNA and protein expression levels were evaluated in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 ACCs). In vitro siRNA knockdown of TOP2A in ACC cell lines (NCI-H295R and SW13) was used to determine its effect on cellular proliferation, cell cycle, anchorage-independent growth, and cellular invasion. We screened 14 TOP2A inhibitors for their anticancer activity in ACC cells. TOP2A mRNA and protein expression was significantly higher in ACC than in benign and normal adrenocortical tissue samples (P<0.05). Knockdown of TOP2A gene expression in ACC cell lines significantly decreased cell proliferation, anchorage-independent growth, and invasion (P<0.05). A screening assay in NCI-H295R cells showed that 11 of 14 TOP2A inhibitors had antiproliferative activity, 5 of the 14 TOP2A inhibitors had a higher antiproliferative activity than mitotane, and aclarubicin was the agent with the highest activity. Aclarubicin was validated to significantly decrease proliferation and tumor spheroid size in both NCI-H295R and SW13 ACC cell lines (P<0.05). Our results suggest that TOP2A is overexpressed in ACC, regulates cellular proliferation and invasion in ACC cells, and is an attractive target for ACC therapy. Of the TOP2A inhibitors screened, aclarubicin is a good candidate agent to test in future clinical trials for patients with locally advanced and metastatic ACC.

Open access

Kate M Warde, Erik Schoenmakers, Eduardo Ribes Martinez, Yi Jan Lim, Maeve Leonard, Sarah J Lawless, Paula O’Shea, Krishna V Chatterjee, Mark Gurnell, Constanze Hantel, and Michael Conall Dennedy

Adrenocortical carcinoma (ACC) is a rare aggressive malignancy with a poor outcome largely due to limited treatment options. Here, we propose a novel therapeutic approach through modulating intracellular free cholesterol via the liver X receptor alpha (LXRα) in combination with current first-line pharmacotherapy, mitotane. H295R and MUC-1 ACC cell lines were pretreated with LXRα inhibitors in combination with mitotane. In H295R, mitotane (20, 40 and 50 µM) induced dose-dependent cell death; however, in MUC-1, this only occurred at a supratherapeutic concentration (200 µM). LXRα inhibition potentiated mitotane-induced cytotoxicity in both cell lines. This was confirmed through use of the CompuSyn model which showed moderate pharmacological synergism and was indicative of apoptotic cell death via an increase in annexinV and cleaved-caspase 3 expression. Inhibition of LXRα was confirmed through downregulation of cholesterol efflux pumps ABCA1 and ABCG1; however, combination treatment with mitotane attenuated this effect. Intracellular free-cholesterol levels were associated with increased cytotoxicity in H295R (r 2 = 0.5210) and MUC-1 (r 2 = 0.9299) cells. While both cell lines exhibited similar levels of free cholesterol at baseline, H295R were cholesterol ester rich, whereas MUC-1 were cholesterol ester poor. We highlight the importance of LXRα mediated cholesterol metabolism in the management of ACC, drawing attention to its role in the therapeutics of mitotane sensitive tumours. We also demonstrate significant differences in cholesterol storage between mitotane sensitive and resistant disease.

Free access

Anna Angelousi, Eva Kassi, Narjes Ansari-Nasiri, Harpal Randeva, Gregory Kaltsas, and George Chrousos

Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called ‘clock genes’ that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes’ epigenetic alterations, including hypermethylation of clock genes’ promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.

Free access

Antonio M Lerario, Kazutaka Nanba, Amy R Blinder, Sachiko Suematsu, Masao Omura, Tetsuo Nishikawa, Thomas J Giordano, William E Rainey, and Tobias Else

Somatic variants in genes that regulate intracellular ion homeostasis have been identified in aldosterone-producing adenomas (APAs). Although the mechanisms leading to increased aldosterone production in APA cells have been well studied, the molecular events that cause cell proliferation and tumor formation are poorly understood. In the present study, we have performed whole-exome sequencing (WES) to characterize the landscape of somatic alterations in a homogeneous series of APA with pathogenic KCNJ5 variants. In the WES analysis on 11 APAs, 84 exonic somatic events were called by 3 different somatic callers. Besides the KCNJ5 gene, only two genes (MED13 and ZNF669) harbored somatic variants in more than one APA. Unlike adrenocortical carcinomas, no chromosomal instability was observed by the somatic copy-number alteration and loss of heterozygosity analyses. The estimated tumor purity ranged from 0.35 to 0.67, suggesting a significant proportion of normal cell infiltration. Based on the results of PureCN analysis, the KCNJ5 variants appear to be clonal. In conclusion, in addition to KCNJ5 somatic pathogenic variants, no significant somatic event that would obviously explain proliferation or tumor growth was observed in our homogeneous cohort of KCNJ5-mutated APA. The molecular mechanisms causing APA growth and tumorigenesis remain to be elucidated.

Free access

Adwitiya Kar, Yu Zhang, Betelehem W Yacob, Jordan Saeed, Kenneth D Tompkins, Stacey M Bagby, Todd M Pitts, Hilary Somerset, Stephen Leong, Margaret E Wierman, and Katja Kiseljak-Vassiliades

Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.