Search Results

You are looking at 21 - 30 of 51 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: ACTH x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Restricted access

Fady Hannah-Shmouni, Annabel Berthon, Fabio R Faucz, Juan Medina Briceno, Andrea Gutierrez Maria, Andrew Demidowich, Mirko Peitzsch, Jimmy Masjkur, Fidéline Bonnet-Serrano, Anna Vaczlavik, Jérôme Bertherat, Martin Reincke, Graeme Eisenhofer, and Constantine A Stratakis

Biochemical characterization of primary bilateral macronodular adrenocortical hyperplasia (PBMAH) by distinct plasma steroid profiles and its putative correlation to disease has not been previously studied. LC-MS/MS–based steroid profiling of 16 plasma steroids was applied to 36 subjects (22 females, 14 males) with PBMAH, 19 subjects (16 females, 3 males) with other forms of adrenal Cushing's syndrome (ACS), and an age and sex-matched control group. Germline ARMC5 sequencing was performed in all PBMAH cases. Compared to controls, PBMAH showed increased plasma 11-deoxycortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycortisol, and aldosterone, but lower progesterone, DHEA, and DHEA-S with distinct differences in subjects with and without pathogenic variants in ARMC5. Steroids that showed isolated differences included cortisol and 18-oxocortisol with higher (P < 0.05) concentrations in ACS than in controls and aldosterone with higher concentrations in PBMAH when compared to controls. Larger differences in PBMAH than with ACS were most clear for corticosterone, but there were also trends in this direction for 18-hydroxycortisol and aldosterone. Logistic regression analysis indicated four steroids – DHEA, 11-deoxycortisol, 18-oxocortisol, and corticosterone – with the most power for distinguishing the groups. Discriminant analyses with step-wise variable selection indicated correct classification of 95.2% of all subjects of the four groups using a panel of nine steroids; correct classification of subjects with and without germline variants in ARMC5 was achieved in 91.7% of subjects with PBMAH. Subjects with PBMAH show distinctive plasma steroid profiles that may offer a supplementary single-test alternative for screening purposes.

Open access

K E Lines, P Filippakopoulos, M Stevenson, S Müller, H E Lockstone, B Wright, S Knapp, D Buck, C Bountra, and R V Thakker

Medical treatments for corticotrophinomas are limited, and we therefore investigated the effects of epigenetic modulators, a new class of anti-tumour drugs, on the murine adrenocorticotropic hormone (ACTH)-secreting corticotrophinoma cell line AtT20. We found that AtT20 cells express members of the bromo and extra-terminal (BET) protein family, which bind acetylated histones, and therefore, studied the anti-proliferative and pro-apoptotic effects of two BET inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, using CellTiter Blue and Caspase Glo assays, respectively. JQ1 and PFI-1 significantly decreased proliferation by 95% (P < 0.0005) and 43% (P < 0.0005), respectively, but only JQ1 significantly increased apoptosis by >50-fold (P < 0.0005), when compared to untreated control cells. The anti-proliferative effects of JQ1 and PFI-1 remained for 96 h after removal of the respective compound. JQ1, but not PFI-1, affected the cell cycle, as assessed by propidium iodide staining and flow cytometry, and resulted in a higher number of AtT20 cells in the sub G1 phase. RNA-sequence analysis, which was confirmed by qRT-PCR and Western blot analyses, revealed that JQ1 treatment significantly altered expression of genes involved in apoptosis, such as NFκB, and the somatostatin receptor 2 (SSTR2) anti-proliferative signalling pathway, including SSTR2. JQ1 treatment also significantly reduced transcription and protein expression of the ACTH precursor pro-opiomelanocortin (POMC) and ACTH secretion by AtT20 cells. Thus, JQ1 treatment has anti-proliferative and pro-apoptotic effects on AtT20 cells and reduces ACTH secretion, thereby indicating that BET inhibition may provide a novel approach for treatment of corticotrophinomas.

Open access

Paula Sommer, Rachel L Cowen, Andrew Berry, Ann Cookson, Brian A Telfer, Kaye J Williams, Ian J Stratford, Paul Kay, Anne White, and David W Ray

Small cell lung cancer (SCLC) is an aggressive tumor, associated with ectopic ACTH syndrome. We have shown that SCLC cells are glucocorticoid receptor (GR) deficient, and that restoration of GR expression confers glucocorticoid sensitivity and induces apoptosis in vitro. To determine the effects of GR expression in vivo, we characterized a mouse SCLC xenograft model that secretes ACTH precursor peptides, and so drives high circulating corticosterone concentrations (analogous to the ectopic ACTH syndrome). Infection of SCLC xenografts with GR-expressing adenovirus significantly slowed tumor growth compared with control virus infection. Time to fourfold initial tumor volume increased from a median of 9 days to 16 days (P=0.05; n=7 per group). Post-mortem analysis of GR-expressing tumors revealed a threefold increase in apoptotic (TUNEL positive) cells (P<0.01). Infection with the GR-expressing adenovirus caused a significant reduction in Bcl-2 and Bcl-xL transcripts. Furthermore, in both the GR-expressing adenovirus-infected cells and tumors, a significant number of uninfected cells underwent apoptosis, supporting a bystander cell killing effect. Therefore, GR expression is pro-apoptotic for human SCLCs in vivo, as well as in vitro, suggesting that loss of GR confers a survival advantage to SCLCs.

Free access

Odelia Cooper, George Vlotides, Hidenori Fukuoka, Mark I Greene, and Shlomo Melmed

The role of ErbB family in discreet pituitary functions is reviewed. Several ErbB receptor ligands, EGF, TGFα, and heregulin are differentially expressed in normal gonadotroph and lacto-somatotroph lineages, and other elements of the anterior pituitary. ErbB receptors, i.e. EGFR and ErbB2, are also localized to the anterior pituitary with preferential EGFR lactosomatotroph expression. EGF regulates CRH and ACTH secretion and corticotroph proliferation as well as exhibiting autocrine and paracrine effects on gonadotrophs and on lactosomatotroph proliferation, gene and protein expression, and hormonal secretion. EGF and EGFR are expressed in both functioning and non-functioning pituitary adenomas, with higher expression in more aggressive tumor subtypes. ErbB2 receptor is detected in all tumor subtypes, particularly in invasive tumors. ErbB tyrosine kinase inhibitors regulate hormonal secretion, cell morphology, and proliferation in lacto-somatotroph tumors, reflecting the emerging application of targeted pituitary therapeutics.

Free access

Tomoko Sekiya, Marcello D Bronstein, Katiuscia Benfini, Viviane C Longuini, Raquel S Jallad, Marcio C Machado, Tatiana D Goncalves, Luciana H Osaki, Leonardo Higashi, Jose Viana-Jr, Claudio Kater, Misu Lee, Sara Molatore, Guilherme Francisco, Roger Chammas, Michel S Naslavsky, David Schlesinger, Patricia Gama, Yeda A O Duarte, Maria Lucia Lebrão, Mayana Zatz, Osorio Meirelles, Bernardo Liberman, Maria Candida B V Fragoso, Sergio P A Toledo, Natalia S Pellegata, and Rodrigo A Toledo


Germline mutations in p27 kip1 are associated with increased susceptibility to multiple endocrine neoplasias (MEN) both in rats and humans; however, the potential role of common polymorphisms of this gene in endocrine tumor susceptibility and tumorigenesis remains mostly unrecognized. To assess the risk associated with polymorphism rs2066827 (p27-V109G), we genotyped a large cohort of Brazilian patients with sporadic endocrine tumors (pituitary adenomas, n=252; pheochromocytomas, n=125; medullary thyroid carcinoma, n=51; and parathyroid adenomas, n=19) and 885 population-matched healthy controls and determined the odds ratios and 95% CIs. Significant associations were found for the group of patients with pituitary adenomas (P=0.01), particularly for those with ACTH-secreting pituitary adenomas (P=0.005). In contrast, no association was found with GH-secreting pituitary tumors alone or with the sporadic counterpart of MEN2-component neoplasias. Our in vitro analyses revealed increased colony formation and cell growth rate for an AtT20 corticotropin mouse cell line overexpressing the p27-V109G variant compared with cells transfected with the WT p27. However, the genotypic effects in genetic and in vitro approaches were divergent. In accordance with our genetic data showing specificity for ACTH-secreting pituitary tissues, the overexpression of p27-V109G in a GH3 somatotropin rat cell line resulted in no difference compared with the WT. Pituitary tumors are one of the major clinical components of syndromes associated with the p27 pathogenic mutations MENX and MEN4. Our genetic and in vitro data indicate that the common polymorphism rs2066827 may play a role in corticotropinoma susceptibility and tumorigenesis through a molecular mechanism not fully understood thus far.

Free access

Peter M van Koetsveld, Giovanni Vitale, Richard A Feelders, Marlijn Waaijers, Diana M Sprij-Mooij, Ronald R de Krijger, Ernst-Jan M Speel, Johannes Hofland, Steven W J Lamberts, Wouter W de Herder, and Leo J Hofland

Adrenocortical carcinoma (ACC) is an aggressive tumor with very poor prognosis. Novel medical treatment opportunities are required. We investigated the effects of interferon-β (IFN-β), alone or in combination with mitotane, on cell growth and cortisol secretion in primary cultures of 13 human ACCs, three adrenal hyperplasias, three adrenal adenomas, and in two ACC cell lines. Moreover, the interrelationship between the effects of IGF2 and IFN-β was evaluated. Mitotane inhibited cell total DNA content/well (representing cell number) in 7/11 (IC50: 38±9.2 μM) and cortisol secretion in 5/5 ACC cultures (IC50: 4.5±0.1 μM). IFN-β reduced cell number in 10/11 (IC50: 83±18 IU/ml) and cortisol secretion in 5/5 ACC cultures (IC50: 7.3±1.5 IU/ml). The effect of IFN-β on cell number included the induction of apoptosis. IFN-β strongly inhibited mRNA expression of STAR, CYP11A1, CYP17A1, and CYP11B1. Mitotane and IFN-β induced an additive inhibitory effect on cell number and cortisol secretion. IGF2 (10 nM) inhibited apoptosis and increased cell number and cortisol secretion. These effects were counteracted by IFN-β treatment. Finally, IFN-β inhibited IGF2 secretion and mRNA expression. In conclusion, IFN-β is a potent inhibitor of ACC cell growth in human primary ACC cultures, partially mediated by an inhibition of the effects of IGF2, as well as its production. The increased sensitivity of ACC cells to mitotane induced by treatment with IFN-β may open the opportunity for combined treatment regimens with lower mitotane doses. The inhibition of the expression of steroidogenic enzymes by IFN-β is a novel mechanism that may explain its inhibitory effect on cortisol production.

Free access

A Raitila, M Georgitsi, A Karhu, K Tuppurainen, M J Mäkinen, K Birkenkamp-Demtröder, K Salmenkivi, T F Ørntoft, J Arola, V Launonen, P Vahteristo, and L A Aaltonen

Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently observed in patients with pituitary adenoma predisposition (PAP). Though AIP mutation-positive individuals with prolactin-, mixed growth hormone/prolactin-, and ACTH-producing pituitary adenomas as well as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1 (MEN1) and Carney complex (CNC). Genes underlying MEN1 and CNC are rarely mutated in sporadic pituitary adenomas, but more often in other lesions contributing to these two syndromes. Thus far, the occurrence of somatic AIP mutations has not been studied in endocrine tumors other than pituitary adenomas. Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X) with a complete loss of the wild-type allele in the tumors. These results are in agreement with previous studies in that prolactin-producing adenomas are component tumors in PAP. The data also support the previous finding that somatic AIP mutations are not common in pituitary adenomas and suggest that such mutations are rare in other endocrine tumors as well.

Free access

C Schaaf, B Shan, M Buchfelder, M Losa, J Kreutzer, W Rachinger, G K Stalla, T Schilling, E Arzt, M J Perone, and U Renner

Curcumin (diferuloylmethane) is the active ingredient of the spice plant Curcuma longa and has been shown to act anti-tumorigenic in different types of tumours. Therefore, we have studied its effect in pituitary tumour cell lines and adenomas. Proliferation of lactosomatotroph GH3 and somatotroph MtT/S rat pituitary cells as well as of corticotroph AtT20 mouse pituitary cells was inhibited by curcumin in monolayer cell culture and in colony formation assay in soft agar. Fluorescence-activated cell sorting (FACS) analysis demonstrated curcumin-induced cell cycle arrest at G2/M. Analysis of cell cycle proteins by immunoblotting showed reduction in cyclin D1, cyclin-dependent kinase 4 and no change in p27kip. FACS analysis with Annexin V-FITC/7-aminoactinomycin D staining demonstrated curcumin-induced early apoptosis after 3, 6, 12 and 24 h treatment and nearly no necrosis. Induction of DNA fragmentation, reduction of Bcl-2 and enhancement of cleaved caspase-3 further confirmed induction of apoptosis by curcumin. Growth of GH3 tumours in athymic nude mice was suppressed by curcumin in vivo. In endocrine pituitary tumour cell lines, GH, ACTH and prolactin production were inhibited by curcumin. Studies in 25 human pituitary adenoma cell cultures have confirmed the anti-tumorigenic and hormone-suppressive effects of curcumin. Altogether, the results described in this report suggest this natural compound as a good candidate for therapeutic use on pituitary tumours.

Free access

K Revill, K J Dudley, R N Clayton, A M McNicol, and W E Farrell

The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where ∼50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.

Free access

D Dworakowska, E Wlodek, C A Leontiou, S Igreja, M Cakir, M Teng, N Prodromou, M I Góth, S Grozinsky-Glasberg, M Gueorguiev, B Kola, M Korbonits, and A B Grossman

Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours.