Search Results

You are looking at 21 - 30 of 99 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Maria Cristina De Martino, Richard A Feelders, Wouter W de Herder, Peter M van Koetsveld, Fadime Dogan, Joseph A M J L Janssen, A Marlijn Waaijers, Claudia Pivonello, Steven W J Lamberts, Annamaria Colao, Ronald R de Krijger, Rosario Pivonello, and Leo J Hofland

The mTOR pathway has recently been suggested as a new potential target for therapy in adrenocortical carcinomas (ACCs). The aim of the current study is to describe the expression of the mTOR pathway in normal adrenals (NAs) and pathological adrenals and to explore whether there are correlation between the expression of these proteins and the in vitro response to sirolimus. For this purpose, the MTOR, S6K1 (RPS6KB1), and 4EBP1 (EIF4EBP1) mRNA expression were evaluated in ten NAs, ten adrenal hyperplasias (AHs), 17 adrenocortical adenomas (ACAs), and 17 ACCs by qPCR, whereas total(t)/phospho(p)-MTOR, t/p-S6K, and t/p-4EBP1 protein expression were assessed in three NAs, three AHs, six ACAs, and 20 ACCs by immunohistochemistry. The effects of sirolimus on cell survival and/or cortisol secretion in 12 human primary cultures of adrenocortical tumors (ATs) were also evaluated. In NAs and AHs, layer-specific expression of evaluated proteins was observed. S6K1 mRNA levels were lower in ACCs compared with NAs, AHs, and ACAs (P<0.01). A subset of ATs presented a moderate to high staining of the evaluated proteins. Median t-S6K1 protein expression in ACCs was lower than that in ACAs (P<0.01). Moderate to high staining of p-S6K1 and/or p-4EBP1 was observed in most ATs. A subset of ACCs not having moderate to high staining had a higher Weiss score than others (P<0.029). In primary AT cultures, sirolimus significantly reduced cell survival or cortisol secretion only in sporadic cases. In conclusion, these data suggest the presence of an activated mTOR pathway in a subset of ATs and a possible response to sirolimus only in certain ACC cases.

Free access

I Bossis, A Voutetakis, T Bei, F Sandrini, K J Griffin, and C A Stratakis

The type 1 alpha regulatory subunit (R1alpha) of cAMP-dependent protein kinase A (PKA) (PRKAR1A) is an important regulator of the serine-threonine kinase activity catalyzed by the PKA holoenzyme. Carney complex (CNC) describes the association 'of spotty skin pigmentation, myxomas, and endocrine overactivity'; CNC is in essence the latest form of multiple endocrine neoplasia to be described and affects the pituitary, thyroid, adrenal and gonadal glands. Primary pigmented nodular adrenocortical disease (PPNAD), a micronodular form of bilateral adrenal hyperplasia that causes a unique, inherited form of Cushing syndrome, is also the most common endocrine manifestation of CNC. CNC and PPNAD are genetically heterogeneous but one of the responsible genes is PRKAR1A, at least for those families that map to 17q22-24 (the chromosomal region that harbors PRKAR1A). CNC and/or PPNAD are the first human diseases to be caused by mutations in one of the subunits of the PKA holoenzyme. Despite the extensive literature on R1alpha and PKA, little is known about their potential involvement in cell cycle regulation, growth and/or proliferation. The presence of inactivating germline mutations and the loss of its wild-type allele in CNC lesions indicated that PRKAR1A could function as a tumor-suppressor gene in these tissues. However, there are conflicting data in the literature about PRKAR1A's role in human neoplasms, cancer cell lines and animal models. In this report, we review briefly the genetics of CNC and focus on the involvement of PRKAR1A in human tumorigenesis in an effort to reconcile the often diametrically opposite reports on R1alpha.

Free access

Patricia de Cremoux, Dan Rosenberg, Jacques Goussard, Catherine Brémont-Weil, Frédérique Tissier, Carine Tran-Perennou, Lionnel Groussin, Xavier Bertagna, Jérôme Bertherat, and Marie-Laure Raffin-Sanson

Adrenal tumors occur more frequently in women and are the leading cause of Cushing's syndrome during pregnancy. We aimed to evaluate the potential role of sex steroids in the susceptibility of women to adrenocortical tumors. We evaluated the presence of the progesterone receptor (PR), estradiol receptors (ERs), and aromatase in 5 patients with primary pigmented nodular adrenal disease (PPNAD), 15 adrenocortical adenomas (ACAs) and adjacent normal tissues, 12 adrenocortical carcinomas (ACCs), and 3 normal adrenal glands (NA). The expression of PR and ERα was evaluated by enzyme immunoassays, real-time RT-PCR, immunohistochemistry, and cytosol-based ligand-binding assays. ERβ and aromatase levels were evaluated by real-time RT-PCR. ERα concentrations were low in NA, in adrenal tissues adjacent to ACA (51±33), in ACC (53±78), and lower in ACA (11±11 fmol/mg DNA). Conversely, PR concentrations were high in NA and adrenal tissues adjacent to ACA, at 307±216 fmol/mg DNA, and were even higher in tumors – 726±706 fmol/mg DNA in ACA and 1154±1586 fmol/mg DNA in ACC – and in isolated PPNAD nodules. Binding study results in four tumors were compatible with binding to a steroid receptor. In patients with PPNAD, a strong positive immunohistochemical signal was associated with the sole isolated nodular regions. ERβ transcript levels were very high in all samples except those for two ACCs, whereas aromatase levels were low. PR and ERβ are clearly present in normal adrenal glands and adrenal tumors. Further studies may shed light on the possible pathogenic role of these receptors in adrenal proliferation.

Free access

M Seki, K Nomura, D Hirohara, M Kanazawa, T Sawada, K Takasaki, and H Demura

A 58-year-old man had adrenocortical carcinoma in the right adrenal gland. The tumour secreted excessive cortisol and dehydroepiandrosterone-sulphate (DHEA-S), and had invaded the right hepatic lobe and vena cava. Eleven months after surgical tumour resection, the serum DHEA-S levels again increased. Local tumour recurrence and a metastasis was found in the lung. Eleven months after surgery chemotherapy with mitotane (o,p'-DDD) was initiated. Twelve weeks of mitotane reduced serum DHEA-S levels and caused these tumours to disappear. The patient was then treated with low-dose mitotane (1.5-2.0 g/day) for 2 years. Serum levels of mitotane remained at less than 10 microg/ml. Although such low serum levels of mitotane and delayed initiation of mitotane after surgery have been proposed to weaken the antineoplastic effect of mitotane, the patient had a remission for 2 years. However, there was then local re-recurrence with an increase in serum DHEA-S and death 4 months later. The histological features of neoplastic cells were quite different comparing tumour resected at surgery and tumour at autopsy. The latter had more frequent mitotic nuclei. This tumour was initially sensitive to mitotane, but later became insensitive.

Free access

A Stigliano, L Cerquetti, M Borro, G Gentile, B Bucci, S Misiti, P Piergrossi, E Brunetti, M Simmaco, and V Toscano

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p′-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, α-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-β isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

Free access

Christina Wei and Elizabeth C Crowne

Endocrine abnormalities are common among childhood cancer survivors. Abnormalities of the hypothalamic–pituitary–adrenal axis (HPAA) are relatively less common, but the consequences are severe if missed. Patients with tumours located and/or had surgery performed near the hypothalamic–pituitary region and those treated with an accumulative cranial radiotherapy dose of over 30 Gy are most at risk of adrenocorticotrophic hormone (ACTH) deficiency. Primary adrenal insufficiency may occur in patients with tumours located in or involving one or both adrenals. The effects of adjunct therapies also need to be considered, particularly, new immunotherapies. High-dose and/or prolonged courses of glucocorticoid treatment can result in secondary adrenal insufficiency, which may take months to resolve and hence reassessment is important to ensure patients are not left on long-term replacement steroids inappropriately. The prevalence and cumulative incidences of HPAA dysfunction are difficult to quantify because of its non-specific presentation and lack of consensus regarding its investigations. The insulin tolerance test remains the gold standard for the diagnosis of central cortisol deficiency, but due to its risks, alternative methods with reduced diagnostic sensitivities are often used and must be interpreted with caution. ACTH deficiency may develop many years after the completion of oncological treatment alongside other pituitary hormone deficiencies. It is essential that health professionals involved in the long-term follow-up of childhood cancer survivors are aware of individuals at risk of developing HPAA dysfunction and implement appropriate monitoring and treatment.

Free access

Ségolène Hescot, Abdelhamid Slama, Anne Lombès, Angelo Paci, Hervé Remy, Sophie Leboulleux, Rita Chadarevian, Séverine Trabado, Larbi Amazit, Jacques Young, Eric Baudin, and Marc Lombès

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration of 50 μM (14 mg/l), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mt proteins involved in steroidogenesis (STAR, CYP11B1, and CYP11B2). In both H295R and SW13 cells, 50 μM mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase (COX)). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by blue native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 (MT-CO2) and nuclear DNA-encoded COX4 (COX4I1) subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mt biogenesis (increase in mtDNA content and PGC1 α (PPARGC1A) expression) and triggered fragmentation of the mt network. Altogether, our results provide first evidence that mitotane induced a mt respiratory chain defect in human adrenocortical cells.

Free access

Katja Kiseljak-Vassiliades, Yu Zhang, Stacey M Bagby, Adwitiya Kar, Nikita Pozdeyev, Mei Xu, Katherine Gowan, Vibha Sharma, Christopher D Raeburn, Maria Albuja-Cruz, Kenneth L Jones, Lauren Fishbein, Rebecca E Schweppe, Hilary Somerset, Todd M Pitts, Stephen Leong, and Margaret E Wierman

Adrenocortical cancer (ACC) is an orphan malignancy that results in heterogeneous clinical phenotypes and molecular genotypes. There are no curative treatments for this deadly cancer with 35% survival at five years. Our understanding of the underlying pathobiology and our ability to test novel therapeutic targets has been limited due to the lack of preclinical models. Here, we report the establishment of two new ACC cell lines and corresponding patient-derived xenograft (PDX) models. CU-ACC1 cell line and PDX were derived from a perinephric metastasis in a patient whose primary tumor secreted aldosterone. CU-ACC2 cell line and PDX were derived from a liver metastasis in a patient with Lynch syndrome. Short tandem repeat profiling confirmed consistent matches between human samples and models. Both exomic and RNA sequencing profiling were performed on the patient samples and the models, and hormonal secretion was evaluated in the new cell lines. RNA sequencing and immunohistochemistry confirmed the expression of adrenal cortex markers in the PDXs and human tumors. The new cell lines replicate two of the known genetic models of ACC. CU-ACC1 cells had a mutation in CTNNB1 and secreted cortisol but not aldosterone. CU-ACC2 cells had a TP53 mutation and loss of MSH2 consistent with the patient’s known germline mutation causing Lynch syndrome. Both cell lines can be transfected and transduced with similar growth rates. These new preclinical models of ACC significantly advance the field by allowing investigation of underlying molecular mechanisms of ACC and the ability to test patient-specific therapeutic targets.

Free access

Zsófia Tömböl, Peter M Szabó, Viktor Molnár, Zoltán Wiener, Gergely Tölgyesi, János Horányi, Peter Riesz, Peter Reismann, Attila Patócs, István Likó, Rolf-Christian Gaillard, András Falus, Károly Rácz, and Peter Igaz

MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR–mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCTmiR-511 and dCTmiR-503 (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.

Free access

Barbara Mariniello, Antonio Rosato, Gaia Zuccolotto, Beatrice Rubin, Maria Verena Cicala, Isabella Finco, Maurizio Iacobone, Anna Chiara Frigo, Ambrogio Fassina, Raffaele Pezzani, and Franco Mantero

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1–2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1–2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.