Search Results

You are looking at 1 - 10 of 97 items for

  • Abstract: Cushing's x
  • Abstract: Cortisol x
  • Abstract: Adreno* x
  • Abstract: Hyperaldosteronism x
  • Abstract: Hypercortisolism x
  • All content x
Clear All Modify Search
Free access

Carole Guerin, David Taieb, Giorgio Treglia, Thierry Brue, André Lacroix, Frederic Sebag, and Frederic Castinetti

Therapeutic options available for the treatment of Cushing's syndrome (CS) have expanded over the last 5 years. For instance, the efficient management of severe hypercortisolism using a combination of fast-acting steroidogenesis inhibitors has been reported. Recent publications on the long-term efficacy of drugs or radiation techniques have also demonstrated low toxicity. These data should encourage endocrinologists to reconsider the place of bilateral adrenalectomy in patients with ACTH-dependent aetiologies of CS; similarly, the indication of bilateral adrenalectomy is reassessed in primary bilateral macronodular adrenal hyperplasia. The objective of this review is to compare the efficacy and side effects of the various therapeutic options of hypercortisolism with those of bilateral adrenalectomy, in order to better define its indications in the 21st century.

Free access

Isobel C Mouat, Kei Omata, Andrew S McDaniel, Namita G Hattangady, Debnita Talapatra, Andi K Cani, Daniel H Hovelson, Scott A Tomlins, William E Rainey, Gary D Hammer, Thomas J Giordano, and Tobias Else

Several somatic mutations specific to aldosterone-producing adenomas (APAs) have been described. A small proportion of adrenocortical carcinomas (ACCs) are associated with hyperaldosteronism, either primary aldosteronism or hyperreninemic hyperaldosteronism. However, it is unknown whether they harbor mutations of the same spectrum as APAs. The objective of this study is to describe the clinical phenotype and molecular genotype of ACCs with hyperaldosteronism, particularly the analysis for common APA-associated genetic changes. Patients were identified by retrospective chart review at a specialized referral center and by positive staining for CYP11B2 of tissue microarrays. Twenty-five patients with ACC and hyperaldosteronism were initially identified by retrospective chart review, and tissue for further analysis was available on 13 tumors. Seven patients were identified by positive staining for CYP11B2 in a tissue microarray, of which two were already identified in the initial chart review. Therefore, a total number of 18 patients with a diagnosis of ACC and features of either primary aldosteronism or hyperreninemic hyperaldosteronism were therefore included in the final study. Mutational status for a select list of oncogenes, tumor suppressor genes and genes known to carry mutations in APAs were analyzed by next-generation sequencing. Review of clinical data suggested autonomous aldosterone production in the majority of cases, while for some cases, hyperreninemic hyperaldosteronism was the more likely mechanism. The mutational landscape of ACCs associated with hyperaldosteronism was not different from ACCs with a different hormonal phenotype. None of the ACCs harbored mutations of known APA-associated genes, suggesting an alternative mechanism conferring aldosterone production.

Free access

Dimitra A Vassiliadi and Stylianos Tsagarakis

Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a highly heterogeneous entity. The incidental identification of an increasing number of cases has shifted its clinical expression from the rarely encountered severe forms, regarding both cortisol excess and adrenal enlargement, to mild forms of asymptomatic or oligosymptomatic cases with less impressive imaging phenotypes. Activation of cAMP/PKA pathway, either due to alterations of the different downstream signaling pathways or through aberrantly expressed G-protein-coupled receptors, relates to both cortisol secretion and adrenal growth. Germline ARMC5 mutations are a frequent genetic defect. The diagnostic approach consists of both imaging and hormonal characterization. Imaging characterization should be done separately for each lesion. Endocrine evaluation in cases with clinically overt Cushing’s syndrome (CS) is similar to that applied for all forms of CS. In incidentally detected PBMAH, hormonal evaluation includes testing for primary aldosteronism, pheochromocytoma and evaluation for autonomous cortisol secretion, using the 1 mg overnight dexamethasone suppression test. Midnight cortisol or 24-h urinary free cortisol may aid in establishing the degree of cortisol excess. In patients with hypercortisolism, ACTH levels should be measured in order to establish ACTH independency. At variance with other forms of CS, PBMAH may be characterized by a distinct pattern of inefficient steroidogenesis. The appropriate management of PBMAH remains controversial. Bilateral adrenalectomy results in lifetime steroid dependency and is better reserved only for patients with severe CS. Unilateral adrenalectomy might be considered in selected patients. In cases where the regulation of cortisol secretion is mediated by aberrant receptors there is some potential for medical therapy.

Free access

Takako Araki, Ning-Ai Liu, Yukiko Tone, Daniel Cuevas-Ramos, Roy Heltsley, Masahide Tone, and Shlomo Melmed

Cushing’s syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing’s syndrome). Hypercortisolemic features of ectopic Cushing’s syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing’s syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC. We identify an E2F1 cluster binding to the proximal hPOMC promoter region (−42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing’s cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing’s syndrome.

Free access

E Louiset, K Isvi, J M Gasc, C Duparc, B Cauliez, A Laquerrière, J M Kuhn, and H Lefebvre

Abnormal expression of membrane receptors has been previously described in benign adrenocortical neoplasms causing Cushing's syndrome. In particular, we have observed that, in some adreno corticotropic hormone (ACTH)-independent macronodular adrenal hyperplasia tissues, cortisol secretion is controlled by ectopic serotonin7 (5-HT7) receptors. The objective of the present study was to investigate in vitro the effect of serotonin (5-hydroxy tryptamine; 5-HT) on cortisol and renin production by a left adrenocortical carcinoma removed from a 48-year-old female patient with severe Cushing's syndrome and elevated plasma renin levels. Tumor explants were obtained at surgery and processed for immunohistochemistry, in situ hybridization and cell culture studies. 5-HT-like immunoreactivity was observed in mast cells and steroidogenic cells disseminated in the tissue. 5-HT stimulated cortisol release by cultured cells. The stimulatory effect of 5-HT on cortisol secretion was suppressed by the 5-HT7 receptor antagonist SB269970. In addition, immunohistochemistry showed the occurrence of 5-HT7 receptor-like immunoreactivity in carcinoma cells. mRNAs encoding renin as well as renin-like immunoreactivity were detected in endothelial and tumor cells. Cell incubation studies revealed that the adrenocortical tissue also released renin. Renin production was inhibited by 5-HT but was not influenced by ACTH and angiotensin II (Ang II). In conclusion, the present report provides the first demonstration of ectopic serotonin receptors, i.e. 5-HT7 receptors, in an adrenocortical carcinoma. Our results also indicate that 5-HT can influence the secretory activity of malignant adrenocortical tumors in an autocrine/paracrine manner. The effects of 5-HT on adrenocortical tumor cells included a paradoxical inhibitory action on renin production and a stimulatory action on cortisol secretion involving 5-HT7 receptors.

Free access

Aristides Lytras and George Tolis

In the context of multiple neuroendocrine tumor syndromes, reproductive abnormalities may occur via a number of different mechanisms, such as hyperprolactinemia, increased GH/IGF-1 levels, hypogonadotropic hypogonadism, hypercortisolism, hyperandrogenism, hyperthyroidism, gonadotropin hypersecretion, as well as, tumorigenesis or functional disturbances in gonads or other reproductive organs. Precocious puberty and/or male feminization is a feature of McCune–Albright syndrome (MAS), neurofibromatosis type 1 (NF1), Carney complex (CNC), and Peutz–Jeghers syndrome (PJS), while sperm maturation and ovulation defects have been described in MAS and CNC. Although tumorigenesis of reproductive organs due to a multiple neuroendocrine tumor syndrome is very rare, certain lesions are characteristic and very unusual in the general population. Awareness leading to their recognition is important especially when other endocrine abnormalities coexist, as occasionally they may even be the first manifestation of a syndrome. Lesions such as certain types of ovarian cysts (MAS, CNC), pseudogynecomastia due to neurofibromas of the nipple–areola area (NF1), breast disease (CNC and Cowden disease (CD)), cysts and ‘hypernephroid’ tumors of the epididymis or bilateral papillary cystadenomas (mesosalpinx cysts) and endometrioid cystadenomas of the broad ligament (von Hippel–Lindau disease), testicular Sertoli calcifying tumors (CNC, PJS) monolateral or bilateral macroochidism and microlithiasis (MAS) may offer diagnostic clues. In addition, multiple neuroendocrine tumor syndromes may be complicated by reproductive malignancies including ovarian cancer in CNC, breast and endometrial cancer in CD, breast malignancies in NF1, and malignant sex-cord stromal tumors in PJS.

Restricted access

Andrea Gutierrez Maria, Christina Tatsi, Annabel Berthon, Ludivine Drougat, Nikolaos Settas, Fady Hannah-Shmouni, Jerome Bertherat, Fabio R Faucz, and Constantine A Stratakis

Mutations in the protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) and armadillo repeat-containing 5 (ARMC5) genes cause Cushing‘s syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD) and primary bilateral macronodular adrenocortical hyperplasia (PBMAH), respectively. Between the two genes, ARMC5 is highly polymorphic with several variants in the population, whereas PRKAR1A has very little, if any, non-pathogenic variation in its coding sequence. We tested the hypothesis that ARMC5 variants may affect the clinical presentation of PPNAD and CS among patients with PRKAR1A mutations. In this study, 91 patients with PPNAD due to PRKAR1A mutations were tested for abnormal cortisol secretion or CS and for ARMC5 sequence variants. Abnormal cortisol secretion was present in 71 of 74 patients with ARMC5 variants, whereas 11 of 17 patients negative for ARMC5 variants did not have hypercortisolemia. The presence of ARMC5 variants was a statistically strong predictor of CS among patients with PRKAR1A mutations (P < 0.001). Among patients with CS due to PPNAD, ARMC5 variants were associated with lower cortisol levels at baseline (P = 0.04) and after high dose dexamethasone administration (P = 0.02). The ARMC5 p.I170V variant increased ARMC5 protein accumulation in vitro and decreased viability of NCI-H295 cells (but not HEK 293T cells). PPNAD tissues with ARMC5 variants showed stronger ARMC5 protein expression than those that carried a normal ARMC5 sequence. Taken together, our results suggest that ARMC5 variants among patients with PPNAD due to PRKAR1A defects may play the role of a genetic modifier for the presence and severity of hypercortisolemia.

Free access

Asterios Karagiannis, Konstantinos Tziomalos, Anna I Kakafika, Vasilios G Athyros, Faidon Harsoulis, and Dimitri P Mikhailidis

Primary aldosteronism (PA) and, in particular, its two commonest subtypes (i.e. idiopathic hyperaldosteronism (IHA) and aldosterone-producing adenoma (APA)) have been recognized as the most common cause of secondary hypertension. While ‘conservative’ medical treatment with aldosterone receptor antagonists is the therapeutic approach of choice in controlling blood pressure in patients with PA due to IHA, the more invasive (laparoscopic) adrenalectomy seems to be the most suitable therapy for patients with APA. In this review, we focus on the medical approach for the management of APA in cases where surgical excision of the adrenal is not possible.

Free access

Ravi Kumar Dutta, Peter Söderkvist, and Oliver Gimm

Hypertension is a common medical condition and affects approximately 20% of the population in developed countries. Primary aldosteronism is the most common form of secondary hypertension and affects 8–13% of patients with hypertension. The two most common causes of primary aldosteronism are aldosterone-producing adenoma and bilateral adrenal hyperplasia. Familial hyperaldosteronism types I, II and III are the known genetic syndromes, in which both adrenal glands produce excessive amounts of aldosterone. However, only a minority of patients with primary aldosteronism have one of these syndromes. Several novel susceptibility genes have been found to be mutated in aldosterone-producing adenomas: KCNJ5, ATP1A1, ATP2B3, CTNNB1, CACNA1D, CACNA1H and ARMC5. This review describes the genes currently known to be responsible for primary aldosteronism, discusses the origin of aldosterone-producing adenomas and considers the future clinical implications based on these novel insights.

Restricted access

Fady Hannah-Shmouni, Annabel Berthon, Fabio R Faucz, Juan Medina Briceno, Andrea Gutierrez Maria, Andrew Demidowich, Mirko Peitzsch, Jimmy Masjkur, Fidéline Bonnet-Serrano, Anna Vaczlavik, Jérôme Bertherat, Martin Reincke, Graeme Eisenhofer, and Constantine A Stratakis

Biochemical characterization of primary bilateral macronodular adrenocortical hyperplasia (PBMAH) by distinct plasma steroid profiles and its putative correlation to disease has not been previously studied. LC-MS/MS–based steroid profiling of 16 plasma steroids was applied to 36 subjects (22 females, 14 males) with PBMAH, 19 subjects (16 females, 3 males) with other forms of adrenal Cushing's syndrome (ACS), and an age and sex-matched control group. Germline ARMC5 sequencing was performed in all PBMAH cases. Compared to controls, PBMAH showed increased plasma 11-deoxycortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycortisol, and aldosterone, but lower progesterone, DHEA, and DHEA-S with distinct differences in subjects with and without pathogenic variants in ARMC5. Steroids that showed isolated differences included cortisol and 18-oxocortisol with higher (P < 0.05) concentrations in ACS than in controls and aldosterone with higher concentrations in PBMAH when compared to controls. Larger differences in PBMAH than with ACS were most clear for corticosterone, but there were also trends in this direction for 18-hydroxycortisol and aldosterone. Logistic regression analysis indicated four steroids – DHEA, 11-deoxycortisol, 18-oxocortisol, and corticosterone – with the most power for distinguishing the groups. Discriminant analyses with step-wise variable selection indicated correct classification of 95.2% of all subjects of the four groups using a panel of nine steroids; correct classification of subjects with and without germline variants in ARMC5 was achieved in 91.7% of subjects with PBMAH. Subjects with PBMAH show distinctive plasma steroid profiles that may offer a supplementary single-test alternative for screening purposes.