Search Results

You are looking at 101 - 110 of 189 items for

  • Abstract: Hyperparathyroidism x
  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Feng Wu, Fuxingzi Li, Xiao Lin, Feng Xu, Rong-Rong Cui, Jia-Yu Zhong, Ting Zhu, Su-Kang Shan, Xiao-Bo Liao, Ling-Qing Yuan, and Zhao-Hui Mo

Tumour-derived exosomes under hypoxic conditions contain informative miRNAs involved in the interaction of cancer and para-carcinoma cells, thus contributing to tissue remodelling of the tumour microenvironment (TME). Exosomes isolated from hypoxic papillary thyroid cancer cells, BCPAP cells and KTC-1 cells enhanced the angiogenesis of human umbilical vein endothelial cells (HUVECs) compared with exosomes isolated from normal thyroid follicular cell line (Nthy-ori-3-1), normoxic BCPAP or KTC-1 cells both in vitro and in vivo. miR-21-5p was significantly upregulated in exosomes from papillary thyroid cancer BCPAP cells under hypoxic conditions, while the exosomes isolated from hypoxic BCPAP cells with knockdown of miR-21-5p attenuated the promoting effect of angiogenesis. In addition, our experiment revealed that miR-21-5p directly targeted and suppressed TGFBI and COL4A1, thereby increasing endothelial tube formation. Furthermore, elevated levels of exosomal miR-21-5p are found in the sera of papillary thyroid cancer patients, which promote the angiogenesis of HUVECs. Taken together, our study reveals the cell interaction between hypoxic papillary thyroid cancer cells and endothelial cells, elucidating a new mechanism by which hypoxic papillary thyroid cancer cells increase angiogenesis via exosomal miR-21-5p/TGFBI and miR-21-5p/COL4A1 regulatory pathway.

Free access

Giuseppe Palladino, Tiziana Notarangelo, Giuseppe Pannone, Annamaria Piscazzi, Olga Lamacchia, Lorenza Sisinni, Girolamo Spagnoletti, Paolo Toti, Angela Santoro, Giovanni Storto, Pantaleo Bufo, Mauro Cignarelli, Franca Esposito, and Matteo Landriscina

Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro. Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis.

Free access

Urbain Weyemi, Bernard Caillou, Monique Talbot, Rabii Ameziane-El-Hassani, Ludovic Lacroix, Odile Lagent-Chevallier, Abir Al Ghuzlan, Dirk Roos, Jean-Michel Bidart, Alain Virion, Martin Schlumberger, and Corinne Dupuy

NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR, was present in normal thyroid tissue, regulated by TSH and significantly increased in differentiated cancer tissues. TSH increased the protein level of NOX4 in human thyroid primary culture and NOX4-dependent ROS generation. NOX4 immunostaining was detected in normal and pathologic thyroid tissues. In normal thyroid tissue, staining was heterogeneous and mostly found in activated columnar thyrocytes but absent in quiescent flat cells. Papillary and follicular thyroid carcinomas displayed more homogeneous staining. The p22phox protein that forms a heterodimeric enzyme complex with NOX4 displayed an identical cellular expression pattern and was also positively regulated by TSH. ROS may have various biological effects, depending on the site of production. Intracellular NOX4–p22phox localization suggests a role in cytoplasmic redox signaling, in contrast to the DUOX localization at the apical membrane that corresponds to an extracellular H2O2 production. Increased NOX4–p22phox in cancer might be related to a higher proliferation rate and tumor progression but a role in the development of tumors has to be further studied and established in the future.

Free access

Pedro Weslley Rosario, Gabriela Franco Mourão, Maurício Buzelin Nunes, Marcelo Saldanha Nunes, and Maria Regina Calsolari

Recently, it was proposed that some papillary thyroid carcinomas (PTC) will no longer be termed ‘cancer’ and are christened as ‘noninvasive follicular thyroid neoplasm with papillary-like nuclear features’ (NIFTP). As this is a recent definition, little information is available about NIFTP. The objective of this study was to report the frequency, ultrasonographic appearance, cytology result and long-term evolution of cases of NIFTP seen at our institution. We excluded tumours ≤1 cm. The sample consisted of 129 patients. Sixty-four patients were submitted to total thyroidectomy and 65 to lobectomy. These patients with NIFTP did not receive radioiodine. NIFTP corresponded to 15% of cases diagnosed as PTC >1 cm. An ultrasonographic appearance considered to be of low suspicion for malignancy was common in NIFTP (32.5%), whereas a highly suspicious appearance was uncommon (5%). NIFTP frequently exhibited indeterminate cytology (62%), while malignant cytology was uncommon (4%). The patients were followed up for 12–146 months (median 72 months) after surgery. None of the patients developed structural disease during follow-up. Comparing the concentrations of thyroglobulin (Tg) and anti-Tg antibodies (TgAb) obtained 6–12 months after surgery and in the last assessment, none of the patients exhibited an increase in these markers.

Free access

M M Muresan, P Olivier, J Leclère, F Sirveaux, L Brunaud, M Klein, R Zarnegar, and G Weryha

The presence of distant metastases from differentiated thyroid carcinoma decreases the 10-year survival of patients by 50%. Bone metastases represent a frequent complication especially of follicular thyroid cancer and severely reduce the quality of life causing pain, fractures, and spinal cord compression. Diagnosis is established by correlating clinical suspicion with imaging. Imaging is essential to detect, localize, and assess the extension of the lesions and should be used in conjunction with clinical evidence. Bone metastases are typically associated with elevated markers of bone turnover, but these markers have not been evaluated in differentiated thyroid cancer. Skeletal and whole-body magnetic resonance imaging and fusion 2-deoxy-2-[18F]fluoro-d-glucose whole-body positron emission tomography/computed tomography (PET/CT) are the best anatomic and functional imaging techniques available in specialized centers. For well-differentiated lesions, iodine-PET scan combined 124I-PET/CT is the newest imaging development and 131I is the first line of treatment. Bisphosphonates reduce the complications rate and pain, alone or in combination with radioiodine, radionuclides, or external beam radiotherapy and should be employed. Surgery and novel minimally invasive consolidation techniques demand an appropriate patient selection for best results on a multimodal approach. Basic research on interactions between tumor cells and bone microenvironment are identifying potential novel targets for future more effective therapeutic interventions for less differentiated tumors.

Free access

Zhenying Guo, Heather Hardin, and Ricardo V Lloyd

Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.

Free access

Jennifer A Woyach and Manisha H Shah

The spectrum of thyroid cancers ranges from one of the most indolent to one of the most aggressive solid tumors identified. Conventional therapies for thyroid cancers are based on the histologic type of thyroid cancers such as papillary or follicular thyroid cancer (differentiated thyroid cancer (DTC)), medullary thyroid cancer (MTC), or anaplastic thyroid cancer (ATC). While surgery is one of the key treatments for all such types of thyroid cancers, additional therapies vary. Effective targeted therapy for DTC is a decades-old practice with systemic therapies of thyroid stimulating hormone suppression and radioactive iodine therapy. However, for the iodine-refractory DTC, MTC, and ATC there is no effective systemic standard of care treatment. Recent advances in understanding pathogenesis of DTC and development of molecular targeted therapy have dramatically transformed the field of clinical research in thyroid cancer. Over the last five years, incredible progress has been made and phases I–III clinical trials have been conducted in various types of thyroid cancers with some remarkable results that has made an impact on lives of patients with thyroid cancer. Such history-making events have boosted enthusiasm and interest among researchers, clinicians, patients, and sponsors and we anticipate ongoing efforts to develop more effective and safe therapies for thyroid cancer.

Free access

Xiaoyun Dong, Waixing Tang, Stephen Stopenski, Marcia S Brose, Christopher Korch, and Judy L Meinkoth

The functional significance of decreased RAP1GAP protein expression in human tumors is unclear. To identify targets of RAP1GAP downregulation in the thyroid gland, RAP1 and RAP2 protein expression in human thyroid cells and in primary thyroid tumors were analyzed. RAP1GAP and RAP2 were co-expressed in normal thyroid follicular cells. Intriguingly, RAP1 was not detected in normal thyroid cells, although it was detected in papillary thyroid carcinomas, which also expressed RAP2. Both RAP proteins were detected at the membrane in papillary thyroid tumors, suggesting that they are activated when RAP1GAP is downregulated. To explore the functional significance of RAP1GAP depletion, RAP1GAP was transiently expressed at the lowest level that is sufficient to block endogenous RAP2 activity in papillary and anaplastic thyroid carcinoma cell lines. RAP1GAP impaired the ability of cells to spread and migrate on collagen. Although RAP1GAP had no effect on protein tyrosine phosphorylation in growing cells, RAP1GAP impaired phosphorylation of focal adhesion kinase and paxillin at sites phosphorylated by SRC in cells acutely plated on collagen. SRC activity was increased in suspended cells, where it was inhibited by RAP1GAP. Inhibition of SRC kinase activity impaired cell spreading and motility. These findings identify SRC as a target of RAP1GAP depletion and suggest that the downregulation of RAP1GAP in thyroid tumors enhances SRC-dependent signals that regulate cellular architecture and motility.

Free access

Myriem Boufraqech, Lisa Zhang, Meenu Jain, Dhaval Patel, Ryan Ellis, Yin Xiong, Mei He, Naris Nilubol, Maria J Merino, and Electron Kebebew

The expression and function of miR-145 in thyroid cancer is unknown. We evaluated the expression and function of miR-145 in thyroid cancer and its potential clinical application as a biomarker. We found that the expression of miR-145 is significantly downregulated in thyroid cancer as compared with normal. Overexpression of miR-145 in thyroid cancer cell lines resulted in: decreased cell proliferation, migration, invasion, VEGF secretion, and E-cadherin expression. miR-145 overexpression also inhibited the PI3K/Akt pathway and directly targeted AKT3. In vivo, miR-145 overexpression decreased tumor growth and metastasis in a xenograft mouse model, and VEGF secretion. miR-145 inhibition in normal primary follicular thyroid cells decreased the expression of thyroid cell differentiation markers. Analysis of indeterminate fine-needle aspiration samples showed miR-145 had a 92% negative predictive value for distinguishing benign from malignant thyroid nodules. Circulating miR-145 levels were significantly higher in patients with thyroid cancer and showed a venous gradient. Serum exosome extractions revealed that miR-145 is secreted. Our findings suggest that miR-145 is a master regulator of thyroid cancer growth, mediates its effect through the PI3K/Akt pathway, is secreted by the thyroid cancer cells, and may serve as an adjunct biomarker for thyroid cancer diagnosis.

Free access

Caterina Tiozzo, Soula Danopoulos, Maria Lavarreda-Pearce, Sheryl Baptista, Radka Varimezova, Denise Al Alam, David Warburton, Rehan Virender, Stijn De Langhe, Antonio Di Cristofano, Saverio Bellusci, and Parviz Minoo

Even though the role of the tyrosine phosphatase Pten as a tumor suppressor gene has been well established in thyroid cancer, its role during thyroid development is still elusive. We therefore targeted Pten deletion in the thyroid epithelium by crossing Pten flox/flox with a newly developed Nkx2.1-cre driver line in the BALB/c and C57BL/6 genetic backgrounds. C57BL/6 homozygous Pten mutant mice died around 2 weeks of age due to tracheal and esophageal compression by a hyperplasic thyroid. By contrast, BALB/c homozygous Pten mutant mice survived up to 2 years, but with a slightly increased thyroid volume. Characterization of the thyroid glands from C57BL/6 homozygous Pten mutant mice at postnatal day 14 (PN14) showed abnormally enlarged tissue with areas of cellular hyperplasia, disruption of the normal architecture, and follicular degeneration. In addition, differing degrees of hypothyroidism, thyroxine (T4) decrease, and thyroid-stimulating hormone elevation between the strains in the mutants and the heterozygous mutant were detected at PN14. Finally, C57BL/6 heterozygous Pten mutant mice developed thyroid tumors after 2 years of age. Our results indicate that Pten has a pivotal role in thyroid development and its deletion results in thyroid tumor formation, with the timing and severity of the tumor depending on the particular genetic background.