Search Results

You are looking at 101 - 110 of 190 items for

  • Abstract: Hyperparathyroidism x
  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

G Riesco-Eizaguirre, P Gutiérrez-Martínez, M A García-Cabezas, M Nistal, and P Santisteban

The oncogene BRAFV600E is the most frequent genetic event in papillary thyroid carcinoma (PTC) but its prognostic impact still remains to be elucidated. We evaluated a representative series of 67 individuals with PTC who underwent total thyroidectomy. BRAF-positive tumours correlated with early recurrences (32% vs 7.6%; P=0.02) during a median postoperative follow-up period of 3 years. Interestingly, within the recurrences, a significant majority had negative radioiodine (131I) total body scans, predicting a poorer outcome as treatment with 131I is not effective. This last observation led us to investigate the role of BRAFV600E and the MEK-ERK pathway in thyroid dedifferentiation, particularly in Na+/I symporter (NIS) impairment, as this thyroid-specific plasma membrane glycoprotein mediates active transport of I into the thyroid follicular cells. A subset of 60 PTC samples was evaluated for NIS immunoreactivity and, accordingly, we confirmed a significant low NIS expression and impaired targeting to membranes in BRAF-positive samples (3.5% vs 30%; P=0.005). Furthermore, experiments with differentiated PCCl3 thyroid cells demonstrated that transient expression of BRAFV600E sharply impaired both NIS expression and targeting to membrane and, surprisingly, this impairment was not totally dependent on the MEK-ERK pathway. We have concluded that BRAFV600E is a new prognostic factor in PTC that correlates with a high risk of recurrences and less differentiated tumours due to the loss of NIS-mediated 131I uptake.

Free access

Jennifer A Woyach and Manisha H Shah

The spectrum of thyroid cancers ranges from one of the most indolent to one of the most aggressive solid tumors identified. Conventional therapies for thyroid cancers are based on the histologic type of thyroid cancers such as papillary or follicular thyroid cancer (differentiated thyroid cancer (DTC)), medullary thyroid cancer (MTC), or anaplastic thyroid cancer (ATC). While surgery is one of the key treatments for all such types of thyroid cancers, additional therapies vary. Effective targeted therapy for DTC is a decades-old practice with systemic therapies of thyroid stimulating hormone suppression and radioactive iodine therapy. However, for the iodine-refractory DTC, MTC, and ATC there is no effective systemic standard of care treatment. Recent advances in understanding pathogenesis of DTC and development of molecular targeted therapy have dramatically transformed the field of clinical research in thyroid cancer. Over the last five years, incredible progress has been made and phases I–III clinical trials have been conducted in various types of thyroid cancers with some remarkable results that has made an impact on lives of patients with thyroid cancer. Such history-making events have boosted enthusiasm and interest among researchers, clinicians, patients, and sponsors and we anticipate ongoing efforts to develop more effective and safe therapies for thyroid cancer.

Open access

Catherine Ory, Nicolas Ugolin, Céline Levalois, Ludovic Lacroix, Bernard Caillou, Jean-Michel Bidart, Martin Schlumberger, Ibrahima Diallo, Florent de Vathaire, Paul Hofman, José Santini, Bernard Malfoy, and Sylvie Chevillard

Both external and internal exposure to ionizing radiation are strong risk factors for the development of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced from a network of arguments taken together with the individual history of radiation exposure. Neither the histological features nor the genetic alterations observed in these tumors have been shown to be specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-related molecular specificities in a series of secondary thyroid tumors developed in the radiation field of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28 thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC) from their sporadic counterparts. The robustness of this signature was further confirmed by blind case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1 was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors.

Free access

Xinying Li, Zhiming Wang, Jianming Liu, Cane Tang, Chaojun Duan, and Cui Li

The fusion gene encoding the thyroid-specific transcription factor PAX8 and peroxisome proliferator-activated receptor γ (PPARγ (PPARG)) (designated as the PPFP gene) is oncogenic and implicated in the development of follicular thyroid carcinoma (FTC). The effects of PPFP transfection on the biological characteristics of Nthy-ori 3-1 cells were studied by MTT assay, colony formation, soft-agar colony formation, and scratch wound-healing assays as well as by flow cytometry. Furthermore, the differentially expressed proteins were analyzed on 2-DE maps and identified by MALDI-TOF-MS. Validation of five identified proteins (prohibitin, galectin-1, cytokeratin 8 (CK8), CK19, and HSP27) was determined by western blot analysis. PPFP not only significantly increased the viability, proliferation, and mobility of the Nthy-ori 3-1 cells but also markedly inhibited cellular apoptosis. Twenty-eight differentially expressed proteins were identified, among which 19 proteins were upregulated and nine proteins were downregulated in Nthy-ori 3-1PPFP (Nthy-ori 3-1 cells transfected with PPFP). The western blot results, which were consistent with the proteome analysis results, showed that prohibitin was downregulated, whereas galectin-1, CK8, CK19, and HSP27 were upregulated in Nthy-ori 3-1PPFP. Our results suggest that PPFP plays an important role in malignant thyroid transformation. Proteomic analysis of the differentially expressed proteins in PPFP-transfected cells provides important information for further study of the carcinogenic mechanism of PPFP in FTCs.

Free access

Devora Champa, Marika A Russo, Xiao-Hui Liao, Samuel Refetoff, Ronald A Ghossein, and Antonio Di Cristofano

Poorly differentiated tumors of the thyroid gland (PDTC) are generally characterized by a poor prognosis due to their resistance to available therapeutic approaches. The relative rarity of these tumors is a major obstacle to our understanding of the molecular mechanisms leading to tumor aggressiveness and drug resistance, and consequently to the development of novel therapies. By simultaneously activating Kras and deleting p53 (Trp53) in thyroid follicular cells, we have generated a novel mouse model that develops papillary thyroid cancer invariably progressing to PDTC. In several cases, tumors further progress to anaplastic carcinomas. The poorly differentiated tumors are morphologically and functionally similar to their human counterparts and depend on MEK/ERK signaling for proliferation. Using primary carcinomas as well as carcinoma-derived cell lines, we also demonstrate that these tumors are intrinsically resistant to apoptosis due to high levels of expression of the Bcl2 family members, Bcl2a1 (Bcl2a1a) and Mcl1, and can be effectively targeted by Obatoclax, a small-molecule pan-inhibitor of the Bcl2 family. Furthermore, we show that Bcl2 family inhibition synergizes with MEK inhibition as well as with doxorubicin in inducing cell death. Thus, our studies in a novel, relevant mouse model have uncovered a promising druggable feature of aggressive thyroid cancers.

Free access

M M Muresan, P Olivier, J Leclère, F Sirveaux, L Brunaud, M Klein, R Zarnegar, and G Weryha

The presence of distant metastases from differentiated thyroid carcinoma decreases the 10-year survival of patients by 50%. Bone metastases represent a frequent complication especially of follicular thyroid cancer and severely reduce the quality of life causing pain, fractures, and spinal cord compression. Diagnosis is established by correlating clinical suspicion with imaging. Imaging is essential to detect, localize, and assess the extension of the lesions and should be used in conjunction with clinical evidence. Bone metastases are typically associated with elevated markers of bone turnover, but these markers have not been evaluated in differentiated thyroid cancer. Skeletal and whole-body magnetic resonance imaging and fusion 2-deoxy-2-[18F]fluoro-d-glucose whole-body positron emission tomography/computed tomography (PET/CT) are the best anatomic and functional imaging techniques available in specialized centers. For well-differentiated lesions, iodine-PET scan combined 124I-PET/CT is the newest imaging development and 131I is the first line of treatment. Bisphosphonates reduce the complications rate and pain, alone or in combination with radioiodine, radionuclides, or external beam radiotherapy and should be employed. Surgery and novel minimally invasive consolidation techniques demand an appropriate patient selection for best results on a multimodal approach. Basic research on interactions between tumor cells and bone microenvironment are identifying potential novel targets for future more effective therapeutic interventions for less differentiated tumors.

Free access

Brian Hung-Hin Lang, Chung-Yau Lo, Wai-Fan Chan, King-Yin Lam, and Koon-Yat Wan

A number of risk-group stratification or staging systems have been found useful at stratifying patients with differentiated thyroid carcinoma into risk groups. Those identified as high risk could be subjected to more aggressive treatment, while those at low risk could be spared of such treatment. However, the best stratification system in patients with follicular thyroid carcinoma (FTC) remains unclear. Through a comprehensive MEDLINE search from 1965 to 2005, a total of 18 different staging systems were identified in the literature and 14 of them were applicable to 171 patients, with FTC managed at our institution from 1961 to 2001. Cancer-specific survivals (CSS) were calculated by Kaplan–Meier method and were compared by log-rank test. Using Cox proportional hazards analysis, the relative importance of each staging system in determining CSS was calculated by the proportion of variation in survival time explained (PVE). CSS were predicted by 13 out of the 14 staging systems significantly (P < 0.001). The three highest ranked staging systems by PVE were the new American Joint Commitee on Cancer/Union Internationale Centre le Cancer 6th edition, tumour, node, metastases (TNM; 22.4), followed by the Clinical Class (21.2) and the metastases, age, completeness of resection, invasion, size (MACIS; 20.4). In conclusion, 13 out of the 14 presently available staging systems predicted CSS significantly in FTC. When predictability was measured by PVE, the TNM system was found to have the best predictability and thus, should be the stratification system of choice for FTC in the future.

Free access

Rabii Ameziane El Hassani, Camille Buffet, Sophie Leboulleux, and Corinne Dupuy

At physiological concentrations, reactive oxygen species (ROS), including superoxide anions and H2O2, are considered as second messengers that play key roles in cellular functions, such as proliferation, gene expression, host defence and hormone synthesis. However, when they are at supraphysiological levels, ROS are considered potent DNA-damaging agents. Their increase induces oxidative stress, which can initiate and maintain genomic instability. The thyroid gland represents a good model for studying the impact of oxidative stress on genomic instability. Indeed, one particularity of this organ is that follicular thyroid cells synthesise thyroid hormones through a complex mechanism that requires H2O2. Because of their detection in thyroid adenomas and in early cell transformation, both oxidative stress and DNA damage are believed to be neoplasia-preceding events in thyroid cells. Oxidative DNA damage is, in addition, detected in the advanced stages of thyroid cancer, suggesting that oxidative lesions of DNA also contribute to the maintenance of genomic instability during the subsequent phases of tumourigenesis. Finally, ionizing radiation and the mutation of oncogenes, such as RAS and BRAF, play a key role in thyroid carcinogenesis through separate and unique mechanisms: they upregulate the expression of two distinct ‘professional’ ROS-generating systems, the NADPH oxidases DUOX1 and NOX4, which cause DNA damage that may promote chromosomal instability, tumourigenesis and dedifferentiation.

Free access

Giuseppe Palladino, Tiziana Notarangelo, Giuseppe Pannone, Annamaria Piscazzi, Olga Lamacchia, Lorenza Sisinni, Girolamo Spagnoletti, Paolo Toti, Angela Santoro, Giovanni Storto, Pantaleo Bufo, Mauro Cignarelli, Franca Esposito, and Matteo Landriscina

Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro. Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis.

Free access

Zhenying Guo, Heather Hardin, and Ricardo V Lloyd

Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.