Search Results

You are looking at 61 - 70 of 190 items for

  • Abstract: Hyperparathyroidism x
  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Soomin Ahn, Tae Hyuk Kim, Sun Wook Kim, Chang Seok Ki, Hye Won Jang, Jee Soo Kim, Jung Han Kim, Jun-Ho Choe, Jung Hee Shin, Soo Yeon Hahn, Young Lyun Oh, and Jae Hoon Chung

PD-L1 expression is being considered a potential biomarker for response of anti-PD-1 or anti-PD-L1 agents in various tumors. The reported frequency of PD-L1 positivity varies in thyroid carcinomas, and multiple factors may contribute to the variability in PD-L1 positivity. We evaluated the PD-L1 expression in various thyroid cancers on a large scale. A total of 407 primary thyroid cancers with a median 13.7-year of follow-up were included. We evaluated the frequency of PD-L1 expression using a rabbit monoclonal antibody (clone SP142). In addition, we analyzed the relationships between PD-L1 expression and clinicopathologic factors, including TERT promoter, BRAF status and disease progression. Tumoral PD-L1 was expressed in 6.1% of papillary thyroid carcinomas, 7.6% of follicular thyroid carcinomas and 22.2% of anaplastic thyroid carcinomas. The distribution of PD-L1 positivity was different according to cancer histology types (P < 0.001). All PD-L1-positive cases of follicular thyroid carcinoma and anaplastic thyroid carcinoma showed strong intensity. The proportions of positivity in PD-L1 positive anaplastic thyroid carcinomas were more than 80%. PD-L1 in immune cells was positive in 28.5% of papillary thyroid carcinoma, 9.1% of follicular thyroid carcinomas and 11.1% of anaplastic thyroid carcinomas. There was no significant association between clinicopathologic variables, disease progression, oncogenic mutation and PD-L1 expression. PD-L1 was highly expressed in a subset of patients with advanced thyroid cancer, such as follicular and anaplastic thyroid carcinoma. Identification of PD-L1 expression may have direct therapeutic relevance to patients with refractory thyroid cancer.

Open access

Marc Sinotte, François Rousseau, Pierre Ayotte, Eric Dewailly, Caroline Diorio, Yves Giguère, Sylvie Bérubé, and Jacques Brisson

Vitamin D has been associated with reduced breast cancer risk. We studied the association of two vitamin D receptor (VDR) gene single nucleotide polymorphisms restriction enzyme detecting SNP of VDR (FokI and BsmI) with breast cancer risk in two independent case–control studies carried out in the same population. The modifying effect of family history of breast cancer on this relationship was also evaluated. The first and second studies included respectively 718 (255 cases/463 controls) and 1596 (622 cases/974 controls) women recruited in Quebec City, Canada. FokI and BsmI genotypes were assessed. Relative risks of breast cancer were estimated by multivariate logistic regression. Compared with homozygotes for the common F allele (FF genotype), FokI ff homozygotes had a higher breast cancer risk (study 1: odds ratio (OR)=1.22, 95% confidence interval (CI)=0.76–1.95; study 2: OR=1.44, 95% CI=1.05–1.99; and combined studies: OR=1.33, 95% CI=1.03–1.73). Significant interactions were observed between FokI and family history of breast cancer in the two studies as well as in the combined analysis (P interaction=0.031, 0.050 and 0.0059 respectively). Among women without family history, odds ratios were 1.00, 1.27 (95% CI=1.02–1.58) and 1.57 (95% CI=1.18–2.10) respectively for FF, Ff and ff carriers (P trend=0.0013). BsmI Bb+bb genotypes were associated with a weak non-significant increased risk in the two studies (combined OR=1.22, 95% CI=0.95–1.57) without interaction with family history. Results support the idea that vitamin D, through its signalling pathway, can affect breast cancer risk. They also suggest that variability in observed associations between VDR FokI and breast cancer from different studies may partly be explained by the proportion of study subjects with a family history of breast cancer.

Free access

Alyson Murray, Stephen F Madden, Naoise C Synnott, Rut Klinger, Darran O'Connor, Norma O'Donovan, William Gallagher, John Crown, and Michael J Duffy

Considerable epidemiological evidence suggests that high levels of circulating vitamin D (VD) are associated with a decreased incidence and increased survival from cancer, i.e., VD may possess anti-cancer properties. The aim of this investigation was therefore to investigate the anti-cancer potential of a low calcaemic vitamin D analogue, i.e., inecalcitol and compare it with the active form of vitamin D, i.e., calcitriol, in a panel of breast cancer cell lines (n = 15). Using the MTT assay, IC50 concentrations for response to calcitriol varied from 0.12 µM to >20 µM, whereas those for inecalcitol were significantly lower, ranging from 2.5 nM to 63 nM (P = 0.001). Sensitivity to calcitriol and inecalcitol was higher in VD receptor (VDR)-positive compared to VDR-negative cell lines (P = 0.0007 and 0.0080, respectively) and in ER-positive compared to ER-negative cell lines (P = 0.043 and 0.005, respectively). Using RNA-seq analysis, substantial but not complete overlap was found between genes differentially regulated by calcitriol and inecalcitol. In particular, significantly enriched gene ontology terms such as cell surface signalling and cell communication were found after treatment with inecalcitol but not with calcitriol. In contrast, ossification and bone morphogenesis were found significantly enriched after treatment with calcitriol but not with inecalcitol. Our preclinical results suggest that calcitriol and inecalcitol can inhibit breast cancer cell line growth, especially in cells expressing ER and VDR. As inecalcitol is significantly more potent than calcitriol and has low calcaemic potential, it should be further investigated for the treatment of breast cancer.

Free access

D Führer, A Tannapfel, O Sabri, P Lamesch, and R Paschke

In a 59-year-old patient, thyroid follicular cancer was diagnosed in two right-sided toxic thyroid nodules, which had presented clinically as unilateral thyroid autonomy. In addition, the patient had histologically proven lung metastases of thyroid cancer; however, these failed to exhibit iodine uptake and were resistant to radioiodine treatment. The functional activity of the thyroid nodules prompted us to screen for TSH receptor (TSHR) mutations, and the histological diagnosis of follicular carcinoma led us to search for the PAX8-PPARgamma1 rearrangement and mutations in the ras genes. Each thyroid nodule harboured a different TSHR mutation (large nodule, Asp633Tyr; small nodule, Phe631Ile). Presence of both mutations in one sample suggestive of local invasion of a thyroid carcinoma could not be demonstrated, although several specimens from different nodule locations were screened. Only the wild-type TSHR sequence was identified in the histologically normal left thyroid lobe, and no genetic alterations were found in the other investigated genes. No TSHR mutations were detected in the pulmonary metastases. This is the first case report of a patient with toxic follicular thyroid carcinoma harbouring two different TSHR mutations and presenting with non-functional lung metastases.

Free access

Denise Zwanziger, Julia Badziong, Saskia Ting, Lars Christian Moeller, Kurt Werner Schmid, Udo Siebolts, Claudia Wickenhauser, Henning Dralle, and Dagmar Fuehrer

CLAUDIN-1 belongs to the family of transmembrane tight junction proteins tightening the paracellular cleft of epithelial cells. In human malignancies, CLAUDIN-1 is often dysregulated and located in subcellular compartments, particularly in the nucleus where it may influence cellular behaviour. Here, we studied CLAUDIN-1 in relation to the biological characteristics of follicular thyroid carcinoma (FTC). CLAUDIN-1 immuno-staining showed loss of membrane expression and increased nuclear CLAUDIN-1 localization in FTC metastases. CLAUDIN-1 function was further investigated in two different follicular thyroid carcinoma cell lines: FTC-133 isolated from a regional lymph node metastasis and FTC-238 derived from a lung metastasis. In both cell lines CLAUDIN-1 expression was demonstrated in the cell nuclei with a significantly higher protein expression in FTC-238 compared to FTC-133 cells. Interestingly, in vitro scratch assay revealed enriched nuclear CLAUDIN-1 expression near the scratch. Furthermore, the increase of the pathogenic character of FTC-133 cells by RASV12 transfection was associated with elevated CLAUDIN-1 expression and enhanced cell migration, invasion and proliferation. Likewise over-expression of nuclear CLAUDIN-1 in FTC-133 cells resulted in increased cell migration and invasion. Conversely, CLAUDIN-1 downregulation in FTC-238 cells by siRNA resulted in decreased cell migration and invasion and was accompanied by reduced phosphoPKC expression. Moreover, activation and inhibition of PKC resulted in CLAUDIN-1 up- and downregulation in FTC cells respectively. These data suggest an impact of CLAUDIN-1 on follicular thyroid carcinoma aggressiveness, which could potentially be influenced by PKC activity.

Free access

Shu-Fu Lin, Jen-Der Lin, Chuen Hsueh, Ting-Chao Chou, and Richard J Wong

Activation of cyclin-dependent kinase activity is frequently observed in many human cancers; therefore, cyclin-dependent kinases that promote cell cycle transition and cell proliferation may be potential targets in the treatment of malignancy. The therapeutic effects of roniciclib, a cyclin-dependent kinase inhibitor for papillary and follicular thyroid cancer (designated as well-differentiated thyroid cancer), were investigated in this study. Roniciclib inhibited cell proliferation in two papillary and two follicular thyroid cancer cell lines in a dose-dependent manner. Roniciclib activated caspase-3 activity and induced apoptosis. Cell cycle progression was arrested in the G2/M phase. Roniciclib treatment in vivo retarded the growth of two well-differentiated thyroid tumors in xenograft models in a dose-dependent fashion. Furthermore, the combination of roniciclib with sorafenib was more effective than either single treatment in a follicular thyroid cancer xenograft model. Acceptable safety profiles appeared in animals treated with either roniciclib alone or roniciclib and sorafenib combination therapy. These findings support roniciclib as a potential drug for the treatment of patients with well-differentiated thyroid cancer.

Free access

Shu-Fu Lin, Jen-Der Lin, Chun-Nan Yeh, Yu-Tung Huang, Ting-Chao Chou, and Richard J Wong

Polo-like kinases (PLKs) are pivotal regulators of cell proliferation and cell survival; therefore, PLKs may be potential targets in the treatment of malignancy. The therapeutic effects of volasertib, a PLKs inhibitor for papillary and follicular thyroid cancer (known as well-differentiated thyroid cancer (WDTC)), were evaluated in this study. Volasertib inhibited cell proliferation in two papillary and two follicular thyroid cancer cell lines in a dose-dependent manner. Volasertib treatment reduced cells in the S phase and increased cells in the G2/M phase. Volasertib activated caspase-3 activity and induced apoptosis. Drug combinations of volasertib and sorafenib showed mostly synergism in four well-differentiated thyroid carcinoma cell lines in vitro. Volasertib treatment in vivo retarded the growth of a papillary thyroid tumor model. Furthermore, the combination of volasertib with sorafenib was more effective than a single treatment of either in a follicular thyroid cancer xenograft model. Promising safety profiles appeared in animals treated with either volasertib alone or volasertib and sorafenib combination therapy. These findings support volasertib as a potential drug for the treatment of patients with WDTC.

Free access

Isabel Amendoeira, Tiago Maia, and Manuel Sobrinho-Simões

The 2017 edition of the WHO book on Classification of Tumours of Endocrine Organs includes a new section entitled ‘Other encapsulated follicular-patterned thyroid tumours’, in which the newly created NIFTP (non-invasive follicular thyroid neoplasm with papillary-like nuclear features) is identified and described in detail. Despite deleting the word ‘carcinoma’ from its name, NIFTP is not a benign tumor either and is best regarded as a neoplasm with ‘very low malignant potential’. The main goal of the introduction of NIFTP category is to prevent overdiagnosis and overtreatment. Sampling constraints, especially when dealing with heterogeneous and/or large nodules, and difficulties in the invasiveness evaluation, are the major weaknesses of the histological characterization of NIFTP. At the cytological level, NIFTP can be separated from classic papillary carcinoma (cPTC) but not from encapsulated, invasive follicular variant PTC. The impact of NIFTP individualization for cytopathology is the drop of rates of malignancy for each Bethesda category in general and for indeterminate categories in particular. The biggest impact will be seen in institutions with a high frequency of FVPTC. The introduction of NIFTP has changed the utility of predictive values of molecular tests because RAS mutations and PAX8-PPARg rearrangements are frequently detected in NIFTP. This turns less promising the application of mutation detection panels as indicators of malignancy and will probably contribute to switch to a rule-out approach of molecular testing. Selection for surgery will go on being determined by a combined detection of clinical, cytological and ultrasound suspicious features.

Free access

M Niedziela

According to the literature thyroid nodules are quite rare in the first two decades of life. However, there are some exceptions, relating to areas with an iodine deficiency or affected by radioactive fallout, where the risk of nodules and carcinomas is increased. Therefore, it is a great challenge for the physician to distinguish between benign and malignant lesions preoperatively, and not only in these areas of greater risk. A careful work-up, comprising the patient’s history, clinical examination, laboratory tests, thyroid ultrasound, scintigraphy, fine-needle aspiration biopsy (FNAB) and molecular studies, is mandatory to improve the preoperative diagnosis. The differential diagnosis should also include benign thyroid conditions such as: (i) congenital hypothyroidism due to dyshormonogenesis or ectopy, (ii) thyroid hemiagenesis, (iii) thyroglossal duct cyst, (iv) simple goiter, (v) cystic lesion, (vi) nodular hyperplasia, (vii) follicular adenoma, (viii) Graves’ disease and (ix) Hashimoto thyroiditis, all of which can predispose to the development of thyroid nodules. The majority of thyroid carcinomas derive from the follicular cell (papillary, follicular, insular and undifferentiated (or anaplastic) thyroid carcinoma), whereas medullary thyroid carcinoma derives from calcitonin-producing cells. Inherited forms of thyroid cancer may occur, especially in relation to medullary thyroid carcinoma. FNAB is a critical factor in establishing the preoperative diagnosis. However, we should keep in mind the fact that a conventional cytological evaluation can miss the neoplastic nature of a lesion and the employment of immunocytochemical and molecular studies of aspirates from FNAB can give us a more precise diagnosis of neoplasia in thyroid nodules once they are detected.

Free access

Daphne R Pringle, Zhirong Yin, Audrey A Lee, Parmeet K Manchanda, Lianbo Yu, Alfred F Parlow, David Jarjoura, Krista M D La Perle, and Lawrence S Kirschner

Thyroid cancer is the most common endocrine malignancy in the population, and the incidence of this cancer is increasing at a rapid rate. Although genetic analysis of papillary thyroid cancer (PTC) has identified mutations in a large percentage of patients, the genetic basis of follicular thyroid cancer (FTC) is less certain. Thyroid cancer, including both PTC and FTC, has been observed in patients with the inherited tumor predisposition Carney complex, caused by mutations in PRKAR1A. In order to investigate the role of loss of PRKAR1A in thyroid cancer, we generated a tissue-specific knockout of Prkar1a in the thyroid. We report that the resulting mice are hyperthyroid and developed follicular thyroid neoplasms by 1 year of age, including FTC in over 40% of animals. These thyroid tumors showed a signature of pathway activation different from that observed in other models of thyroid cancer. In vitro cultures of the tumor cells indicated that Prkar1a-null thyrocytes exhibited growth factor independence and suggested possible new therapeutic targets. Overall, this work represents the first report of a genetic mutation known to cause human FTC that exhibits a similar phenotype when modeled in the mouse. In addition to our knowledge of the mechanisms of human follicular thyroid tumorigenesis, this model is highly reproducible and may provide a viable mechanism for the further clinical development of therapies aimed at FTC.