Search Results

You are looking at 21 - 30 of 155 items for

  • Abstract: Pituitary x
  • Abstract: Hypothalamus x
  • Abstract: Notch x
  • Abstract: Prolactin x
  • Abstract: Hypopituitarism x
  • All content x
Clear All Modify Search
Open access

Thomas Cuny, Caroline Zeiller, Martin Bidlingmaier, Céline Défilles, Catherine Roche, Marie-Pierre Blanchard, Marily Theodoropoulou, Thomas Graillon, Morgane Pertuit, Dominique Figarella-Branger, Alain Enjalbert, Thierry Brue, and Anne Barlier

Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (P<0.0001 vs control). A dose-dependent inhibition of PRL secretion occurred in three mixed GH/PRL adenomas under PEG with a maximum of 52.8±11.5% at 10μg/mL (P<0.0001 vs control). No impact on proliferation of either human primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation.

Free access

Hongyu Chen, Dan Liu, Zhengyan Yang, Limin Sun, Que Deng, Shuo Yang, Lu Qian, Liang Guo, Ming Yu, Meiru Hu, Ming Shi, and Ning Guo

Angiogenesis is an important factor in invasive tumor growth, progression, and metastasis. Multiple proangiogenic mechanisms are involved in tumor angiogenesis. In this study, we showed that the neurotransmitter norepinephrine upregulated VEGF (VEGFA) expression in breast cancer cells and that the culture supernatant from norepinephrine-treated breast cancer cells promoted the formation of the capillary-like network of endothelial cells. However, the effects of norepinephrine were further enhanced when the endothelial cells were cocultured with breast cancer cells, indicating a critical role of tumor cell–endothelial cell contacts in norepinephrine-induced tumor angiogenesis. Interestingly, norepinephrine dramatically induced the activation of the Notch pathway, which is a cell-contact-mediated intercellular signaling pathway and tightly linked to tumor cell–stromal cell interaction and angiogenesis, in the endothelial cells that had been cocultured with breast cancer cells. Furthermore, the expression of the Notch ligand Jagged 1 was significantly upregulated by norepinephrine at both mRNA and protein levels in breast cancer cells. Inhibitors of β2-adrenergic receptor (β2-AR), protein kinase A (PKA), and mTOR could reverse norepinephrine-induced Jagged 1 upregulation, indicating that the β2-AR–PKA–mTOR pathway participates in this process. Knockdown of Jagged 1 expression in breast cancer cells not only repressed norepinephrine-induced activation of the Notch pathway in cocultured endothelial cells but also evidently impaired the effects of norepinephrine on capillary-like sprout formation. These data demonstrate that tumor angiogenesis mediated by the Jagged 1/Notch intercellular signaling is governed by the norepinephrine-activated β2-AR–PKA–mTOR pathway.

Free access

Brandi B Knight, Gabriela M Oprea-Ilies, Arumugam Nagalingam, Lily Yang, Cynthia Cohen, Neeraj K Saxena, and Dipali Sharma

Obese breast cancer patients exhibit a higher risk for larger tumor burden and an increased likelyhood of metastasis. The molecular effects of obesity on carcinogenesis are mediated by the autocrine and paracrine effects of the adipocytokine leptin. Leptin participates in the tumor progression and metastasis of human breast. We show that leptin induces clonogenicity and increases the migration potential of breast cancer cells. We found that survivin expression is induced in response to leptin. In this study, we examine the role and leptin-mediated regulation of survivin. Leptin treatment leads to survivin upregulation, due in part to the activation of Notch1 and the release of a transcriptionally active Notch1 intracellular domain (NICD). Chromatin immunoprecipitation analysis shows that NICD gets recruited to the survivin promoter at the CSL (CBF1/RBP-Jk, Su(H), Lag-1) binding site in response to leptin treatment. Inhibition of Notch1 activity inhibits leptin-induced survivin upregulation. Leptin-induced transactivation of epidermal growth factor receptor (EGFR) is involved in leptin-mediated Notch1 and survivin upregulation, demonstrating a novel upstream role of leptin–EGFR–Notch1 axis. We further show that leptin-induced migration of breast cancer cells requires survivin, as overexpression of survivin further increases, whereas silencing survivin abrogates leptin-induced migration. Using a pharmacological approach to inhibit survivin, we show that 3-hydroxy-3-methylglutaryl-coenzyme-A-reductase inhibitors, such as lovastatin, can effectively inhibit leptin-induced survivin expression and migration. Importantly, leptin increased breast tumor growth in nude mice. These data show a novel role for survivin in leptin-induced migration and put forth pharmacological survivin inhibition as a potential novel therapeutic strategy. This conclusion is supported by in vivo data showing the overexpression of leptin and survivin in epithelial cells of high-grade ductal carcinomas in situ and in high-grade invasive carcinomas.

Free access

Y Capodanno, F O Buishand, L Y Pang, J Kirpensteijn, J A Mol, and D J Argyle

Insulinomas (INS) are the most common neuroendocrine pancreatic tumours in humans and dogs. The long-term prognosis for malignant INS is still poor due to a low success rate of the current treatment modalities, particularly chemotherapy. A better understanding of the molecular processes underlying the development and progression of INS is required to develop novel targeted therapies. Cancer stem cells (CSCs) are thought to be critical for the engraftment and chemoresistance of many tumours, including INS. This study was aimed to characterise and target INS CSCs in order to develop novel targeted therapies. Highly invasive and tumourigenic human and canine INS CSC-like cells were successfully isolated. These cells expressed stem cell markers (OCT4, SOX9, SOX2, CD133 and CD34), exhibited greater resistance to 5-fluorouracil (5-FU) and demonstrated a more invasive and tumourigenic phenotype in vivo compared to bulk INS cells. Here, we demonstrated that Notch-signalling-related genes (NOTCH2 and HES1) were overexpressed in INS CSC-like cells. Protein analysis showed an active NOTCH2-HES1 signalling in INS cell lines, especially in cells resistant to 5-FU. Inhibition of the Notch pathway, using a gamma secretase inhibitor (GSI), enhanced the sensitivity of INS CSC-like cells to 5-FU. When used in combination GSI and 5-FU, the clonogenicity in vitro and the tumourigenicity in vivo of INS CSC-like cells were significantly reduced. These findings suggested that the combined strategy of Notch signalling inhibition and 5-FU synergistically attenuated enriched INS CSC populations, providing a rationale for future therapeutic exploitation.

Free access

Anne Wierinckx, Carole Auger, Pauline Devauchelle, Arlette Reynaud, Pascale Chevallier, Michel Jan, Gilles Perrin, Michelle Fèvre-Montange, Catherine Rey, Dominique Figarella-Branger, Gérald Raverot, Marie-Françoise Belin, Joël Lachuer, and Jacqueline Trouillas

Although most pituitary tumors are benign, some are invasive or aggressive. In the absence of specific markers of malignancy, only tumors with metastases are considered malignant. To identify markers of invasion and aggressiveness, we focused on prolactin (PRL) tumors in the human and rat. Using radiology and histological methods, we classified 25 human PRL tumors into three groups (non-invasive, invasive, and aggressive–invasive) and compared them with a model of transplantable rat PRL tumors with benign and malignant lineages. Combining histological(mitoses and labeling for Ki-67, P53, pituitary transforming tumor gene (PTTG), and polysialic acid neural cell adhesion molecule) and transcriptomic (microarrays and q-RTPCR) methods with clinical data (post-surgical outcome with case–control statistical analysis), we found nine genes implicated in invasion (ADAMTS6, CRMP1, and DCAMKL3) proliferation (PTTG, ASK, CCNB1, AURKB, and CENPE), or pituitary differentiation (PITX1) showing differential expression in the three groups of tumors (P = 0.015 to 0.0001). A case–control analysis, comparing patients in remission (9 controls) and patients with persistent or recurrent tumors (14 cases) revealed that eight out of the nine genes were differentially up- or downregulated (P = 0.05 to 0.002), with only PTTG showing no correlation with clinical course (P = 0.258). These combined histological and transcriptomic analyses improve the pathological diagnosis of PRL tumors, indicating a reliable procedure for predicting tumor aggressiveness and recurrence potential. The similar gene profiles found between non-invasive human and benign rat tumors, as well as between aggressive–invasive human and malignant rat tumors provide new insights into malignancy in human pituitary tumors.

Open access

I Ben-Batalla, S Seoane, M Macia, T Garcia-Caballero, L O Gonzalez, F Vizoso, and R Perez-Fernandez

The transcription factor Pit-1/Pou1f1 regulates GH and prolactin (PRL) secretion in the pituitary gland. Pit-1 expression and GH regulation by Pit-1 have also been demonstrated in mammary gland. However, no data are available on the role of Pit-1 on breast PRL. To evaluate this role, several human breast cancer cell lines were transfected with either the Pit-1 expression vector or a Pit-1 small interference RNA construct, followed by PRL mRNA and protein evaluation. In addition, transient transfection of MCF-7 cells by a reporter construct containing the proximal PRL promoter, and ChIP assays were performed. Our data indicate that Pit-1 regulates mammary PRL at transcriptional level by binding to the proximal PRL promoter. We also found that Pit-1 raises cyclin D1 expression before increasing PRL levels, suggesting a PRL-independent effect of Pit-1 on cell proliferation. By using immunohistochemistry, we found a significant correlation between Pit-1 and PRL expression in 94 human breast invasive ductal carcinomas. Considering the possible role of PRL in breast cancer disorders, the function of Pit-1 in breast should be the focus of further research.

Free access

B K Vonderhaar

Normal development and differentiation of the mammary gland are profoundly influenced by prolactin (PRL). In rodent mammary cancer PRL plays a well defined role, but its role, in human breast cancer has not been appreciated until recently. It is now clear that breast tissue, both normal and malignant, is a significant source of extrapituitary PRL. Thus an autocrine/paracrine role of PRL in human breast cancer may be invoked. Both PRL and PRL receptor mRNA are expressed in the vast majority of breast cancer biopsies independent of estrogen and progesterone receptor status. An autocrine/paracrine PRL acting in human breast cancer requires that this hormone's action be blocked at the cellular level, as opposed to suppressing the synthesis and secretion of pituitary PRL. Mutants of PRL or human growth hormone are being explored which act as selective PRL antagonists. In addition, tamoxifen has been shown to act locally at the target tissue by binding directly to the PRL receptor and thus inhibiting PRL's action. These strategies may have clinical relevance in treating PRL-responsive human breast cancer.

Free access

Louise Maymann Rasmussen, Klaus Stensgaard Frederiksen, Nanni Din, Elisabeth Galsgaard, Leif Christensen, Martin Werner Berchtold, and Svetlana Panina

The pituitary hormone prolactin (PRL) plays an important role in mammary gland development. It was also suggested to contribute to breast cancer progression. In vivo data strongly supported a crucial role of PRL in promoting tumour growth; however, PRL demonstrated only a weak, if any, pro-proliferative effect on cancer cells in vitro. Several recent studies indicated that PRL action in vivo may be influenced by the hormonal milieu, e.g. other growth factors such as 17β-oestradiol (E2). Here, we explored the potential interplay between PRL and E2 in regulation of gene expression and cell growth. PRL alone induced either a weak or no proliferative response of T47D and BT-483 cells respectively, while it drastically enhanced cell proliferation in E2-stimulated cultures. Affymetrix microarray analysis revealed 12 genes to be regulated by E2, while 57 genes were regulated by PRL in T47D cells. Most of the PRL-regulated genes (42/57) were not previously described as PRL target genes, e.g. WT1 and IER3. One hundred and five genes were found to be regulated upon PRL/E2 co-treatment: highest up-regulation was found for EGR3, RUNX2, EGR1, MAFF, GLIPR1, IER3, SOCS3, WT1 and AREG. PRL and E2 synergised to regulate EGR3, while multiple genes were regulated additively. These data show a novel interplay between PRL and E2 to modulate gene regulation in breast cancer cells.

Free access

Elizabeth W LaPensee and Nira Ben-Jonathan

Resistance to chemotherapy is a major complication in the treatment of advanced breast cancer. Estrogens and prolactin (PRL) are implicated in the pathogenesis of breast cancer but their roles in chemoresistance have been overlooked. A common feature to the two hormones is activation of their receptors by diverse compounds, which mimic or antagonize their actions. The PRL receptor is activated by lactogens (PRL, GH, or placental lactogen) originating from the pituitary, breast, adipose tissue, or the placenta. Estrogen receptors exist in multiple membrane-associated and cytoplasmic forms that can be activated by endogenous estrogens, man-made chemicals, and phytoestrogens. Here, we review evidence that low doses of PRL, estradiol (E2), and bisphenol A (BPA) antagonize multiple anticancer drugs that induce cell death by different mechanisms. Focusing on cisplatin, a DNA-damaging drug which is effective in the treatment of many cancer types but not breast cancer, we compare the abilities of PRL, E2, and BPA to antagonize its cytotoxicity. Whereas PRL acts by activating the glutathione-S-transferase detoxification enzyme, E2 and BPA act by inducing the antiapoptotic protein Bcl-2. The implications of these findings to patients undergoing chemotherapy are discussed.

Free access

Cuong V Duong, Richard D Emes, Frank Wessely, Kiren Yacqub-Usman, Richard N Clayton, and William E Farrell

DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.