Search Results

You are looking at 91 - 100 of 536 items for

  • Abstract: MEN* x
  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • Abstract: Neoplasia x
  • All content x
Clear All Modify Search
Free access

Marta Kaczmarek-Ryś, Katarzyna Ziemnicka, Andrzej Pławski, Bartłomiej Budny, Michał Michalak, Szymon Hryhorowicz, Justyna Hoppe-Gołębiewska, Paweł Boruń, Monika Gołąb, Małgorzata Czetwertyńska, Maria Sromek, Marlena Szalata, Marek Ruchała, and Ryszard Słomski

The clinical course of medullary thyroid carcinoma (MTC) associated with the MEN2A syndrome as well as of sporadic MTC shows considerable heterogeneity. The disease picture varies not only between the same RET proto-oncogene mutation carriers but also among sporadic MTC patients with no RET germinal mutations, which suggests the involvement of additional modulators of the disease. However, genetic factors responsible for this heterogeneity of the MTC clinical course still remain unknown. The aim of this study was to determine if polymorphic variants or specific haplotypes of the RET gene may modify the MTC clinical course. We genotyped the following loci: c.73+9277T>C, c.135G>A, c.1296A>G, c.2071G>A, c.2307T>C, c.2508C>T and c.2712C>G in 142 MTC patients and controls. We demonstrated considerable differences in the genotypes distribution within c.73+9277T>C, c.135G>A and c.2307T>C loci. Our results show that the c.73+9277T variant associated with a decreased activity of the MCS+9.7 RET enhancer is rare in hereditary MTC patients with primary hyperparathyroidism, and thus, may influence the MTC clinical picture. The decreased activity of the RET promoter enhancer reduces RET expression level and may counterbalance the activating mutation in this gene. Frequent co-occurrence of the c.73+9277T allele with p.E768D, p.Y791F, p.V804M or p.R844Q RET mutations may be associated with their attenuation and milder clinical picture of the disease. Haplotypes analysis showed that C-G-A-G-T-(C)-C (c.73+9277T>C – c.135G>A – c.1296A>G – c.2071G>A – c.2307T>G – (c.2508C>T) – c.2712C>G) alleles combination predisposes to pheochromocytomas and primary hyperparathyroidism. We consider that RET haplotypes defining may become an auxiliary diagnostic tool in MTC patients.

Free access

Yuriko Mori, Alexandru V Olaru, Yulan Cheng, Rachana Agarwal, Jian Yang, Delgermaa Luvsanjav, Wayne Yu, Florin M Selaru, Susan Hutfless, Mark Lazarev, John H Kwon, Steven R Brant, Michael R Marohn, David F Hutcheon, Mark D Duncan, Ajay Goel, and Stephen J Meltzer

DNA hypermethylation is a common epigenetic abnormality in colorectal cancers (CRCs) and a promising class of CRC screening biomarkers. We conducted a genome-wide search for novel neoplasia-specific hypermethylation events in the colon. We applied methylation microarray analysis to identify loci hypermethylated in 17 primary CRCs relative to eight non-neoplastic colonic mucosae (NCs) from neoplasia-free subjects. These CRC-associated hypermethylation events were then individually evaluated for their ability to discriminate neoplastic from non-neoplastic cases, based on real-time quantitative methylation-specific PCR (qMSP) assays in 113 colonic tissues: 51 CRCs, nine adenomas, 19 NCs from CRC patients (CRC–NCs), and 34 NCs from neoplasia-free subjects (control NCs). A strict microarray data filtering identified 169 candidate CRC-associated hypermethylation events. Fourteen of these 169 loci were evaluated using qMSP assays. Ten of these 14 methylation events significantly distinguished CRCs from age-matched control NCs (P<0.05 by receiver operator characteristic curve analysis); methylation of visual system homeobox 2 (VSX2) achieved the highest discriminative accuracy (83.3% sensitivity and 92.3% specificity, P<1×10−6), followed by BEN domain containing 4 (BEND4), neuronal pentraxin I (NPTX1), ALX homeobox 3 (ALX3), miR-34b, glucagon-like peptide 1 receptor (GLP1R), BTG4, homer homolog 2 (HOMER2), zinc finger protein 583 (ZNF583), and gap junction protein, gamma 1 (GJC1). Adenomas were significantly discriminated from control NCs by hypermethylation of VSX2, BEND4, NPTX1, miR-34b, GLP1R, and HOMER2 (P<0.05). CRC–NCs were significantly distinguished from control NCs by methylation of ALX3 (P<1×10−4). In conclusion, systematic methylome-wide analysis has identified ten novel methylation events in neoplastic and non-neoplastic colonic mucosae from CRC patients. These potential biomarkers significantly discriminate CRC patients from controls. Thus, they merit further evaluation in stool- and circulating DNA-based CRC detection studies.

Free access

Christodoulos P Pipinikas, Alison M Berner, Teresa Sposito, and Christina Thirlwell

Neuroendocrine neoplasms (NENs) are a relatively rare group of heterogeneous tumours originating from neuroendocrine cells found throughout the body. Pancreatic NENs (PanNENs) are the second most common pancreatic malignancy accounting for 1–3% of all neoplasms developing in the pancreas. Despite having a low background mutation rate, driver mutations in MEN1, DAXX/ATRX and mTOR pathway genes (PTEN, TSC1/2) are implicated in disease development and progression. Their increased incidence coupled with advances in sequencing technologies has reignited the interest in PanNEN research and has accelerated the acquisition of molecular data. Studies utilising such technological advances have further enriched our knowledge of PanNENs’ biology through novel findings, including higher-than-expected presence of germline mutations in 17% of sporadic tumours of no familial background, identification of novel mutational signatures and complex chromosomal rearrangements and a dysregulated epigenetic machinery. Integrated genomic studies have progressed the field by identifying the synergistic action between different molecular mechanisms, while holding the promise for deciphering disease heterogeneity. Although our understanding is far from being complete, these novel findings have provided the optimism of shaping the future of PanNEN research, ultimately leading to an era of precision medicine for NETs. Here, we recapitulate the existing knowledge on pancreatic neuroendocrine tumours (PanNETs) and discuss how recent, novel findings have furthered our understanding of these complex tumours.

Free access

Rehannah Borup, Maria Rossing, Ricardo Henao, Yohei Yamamoto, Annelise Krogdahl, Christian Godballe, Ole Winther, Katalin Kiss, Lise Christensen, Estrid Høgdall, Finn Bennedbæk, and Finn Cilius Nielsen

The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid carcinoma (FC) and normofollicular adenoma (FA) as well as fetal/microFA (fetal adenoma). Carcinomas were strongly enriched in transcripts encoding proteins involved in DNA replication and mitosis corresponding to increased number of proliferating cells and depleted number of transcripts encoding factors involved in growth arrest and apoptosis. In the latter group, the combined loss of transcripts encoding the nuclear orphan receptors NR4A1 and NR4A3, which were recently shown to play a causal role in hematopoetic neoplasia, was noteworthy. The analysis of differentially expressed transcripts provided a mechanism for cancer progression, which is why we exploited the results in order to generate a molecular classifier that could identify 95% of all carcinomas. Validation employing public domain and cross-platform data demonstrated that the signature was robust and could diagnose follicular nodules originating from different geographical locations and platforms with similar accuracy. We came to the conclusion that down-regulation of factors involved in growth arrest and apoptosis may represent a decisive step in the pathogenesis of FC. Moreover, the described molecular pathways provide an accurate and robust genetic signature for the diagnosis of FA and FC.

Free access

Martin B Niederle, Monika Hackl, Klaus Kaserer, and Bruno Niederle

As incidence data on gastroenteropancreatic neuroendocrine tumours (GEP-NETs) have so far only been retrospectively obtained and based on inhomogeneous material, we conducted a prospective study in Austria collecting all newly diagnosed GEP-NETs during 1 year. Using the current WHO classification, the tumor, nodes, metastases (TNM) staging and Ki67 grading and the standard diagnostic procedure proposed by the European Neuroendocrine Tumor Society (ENETS), GEP-NETs from 285 patients (male: 148; female: 137) were recorded. The annual incidence rates were 2.51 per 100 000 inhabitants for men, 2.36 per 100 000 for women. The stomach (23%) was the main site, followed by appendix (21%), small intestine (15%) and rectum (14%). Patients with appendiceal tumours were significantly younger than patients with tumours in any other site. About 46.0% were classified as benign, 15.4% as uncertain, 31.9% as well differentiated malignant and 6.7% as poorly differentiated malignant. Patients with benign or uncertain tumours were significantly younger than patients with malignant tumours. Among the malignant tumours of the digestive tract, 1.49% arose from neuroendocrine cells. For malignant gastrointestinal NETs, the incidence was 0.80 per 100 000: 40.9% were ENETS stage I, 23.8% stage II, 11.6% stage III and 23.8% stage IV. The majority (59.7%) were grade 1, 31.2% grade 2 and 9.1% grade 3. NETs of the digestive tract are more common than previously reported; the majority show benign behaviour, are located in the stomach and are well differentiated. G3 tumours are very rare.

Free access

Lucieli Ceolin, Marta Amaro da Silveira Duval, Antônio Felippe Benini, Carla Vaz Ferreira, and Ana Luiza Maia

Medullary thyroid carcinoma (MTC) is a rare type of tumor that originates from thyroid C cells and accounts for 2–4% of all malignant thyroid neoplasms. MTC may occur sporadically or be inherited, as part of the MEN 2 syndrome. Germline mutations of the RET (REarranged during Transfection) proto-oncogene cause hereditary cancer, whereas somatic RET mutations and, less frequently, RAS mutations have been described in sporadic MTC samples. Since early surgery with complete resection of tumor mostly determines the likelihood of attaining cure for MTC, the broader use of RET genetic screening has dramatically changed the prognostic of gene carriers in hereditary MTC. Nevertheless, despite recent advances, the management of advanced, progressive MTC remains challenging. The multikinase inhibitors (MKI), vandetanib and cabozantinib, were approved for the treatment of progressive or symptomatic MTC, and several other compounds have exhibited variable efficacy. Although these drugs have been shown to improve progression-free survival, no MKI has been shown to increase the overall survival. As these drugs are nonselective, significant off-target toxicities may occur, limiting achievement of the required TK-specific inhibition. Recently, next-generation small-molecule TKI has been developed. These TKI are specifically designed for highly potent and selective targeting of oncogenic RET alterations, making them promising drugs for the treatment of advanced MTC. Here, we summarize the current understanding of the intracellular signaling pathways involved in MTC pathogenesis as well as the therapeutic approaches and challenges for the management of advanced MTC, focusing on targeted molecular therapies.

Free access

Yeting Du, Monica Ter-Minassian, Lauren Brais, Nichole Brooks, Amanda Waldron, Jennifer A Chan, Xihong Lin, Peter Kraft, David C Christiani, and Matthew H Kulke

The etiology of neuroendocrine tumors remains poorly defined. Although neuroendocrine tumors are in some cases associated with inherited genetic syndromes, such syndromes are rare. The majority of neuroendocrine tumors are thought to be sporadic. We performed a genome-wide association study (GWAS) to identify potential genetic risk factors for sporadic neuroendocrine tumors. Using germline DNA from blood specimens, we genotyped 909,622 SNPs using the Affymetrix 6.0 GeneChip, in a cohort comprising 832 neuroendocrine tumor cases from Dana-Farber Cancer Institute and Massachusetts General Hospital and 4542 controls from the Harvard School of Public Health. An additional 241 controls from Dana-Farber Cancer Institute were used for quality control. We assessed risk associations in the overall cohort, and in neuroendocrine tumor subgroups. We identified no potential risk associations in the cohort overall. In the small intestine neuroendocrine tumor subgroup, comprising 293 cases, we identified risk associations with three SNPs on chromosome 12, all in strong LD. The three SNPs are located upstream of ELK3, a transcription factor implicated in angiogenesis. We did not identify clear risk associations in the bronchial or pancreatic neuroendocrine subgroups. This large-scale study provides initial evidence that presumed sporadic small intestine neuroendocrine tumors may have a genetic etiology. Our results provide a basis for further exploring the role of genes implicated in this analysis, and for replication studies to confirm the observed associations. Additional studies to evaluate potential genetic risk factors for sporadic pancreatic and bronchial neuroendocrine tumors are warranted.

Restricted access

E Levin, S Caruso, and A M Actis

It is accepted that quantitative determination of steroid receptors, useful as it is as a first indication of hormone dependence in mammary neoplasias, is insufficient to accurately characterize the tumor biology, especially for deciding clinical conduct. Functional assays provide one step towards insight on the integrity of receptor behavior, particularly the transcriptional modulation of proteins related to cell proliferation/differentiation. Progesterone receptor (PgR) expression is one such functional marker for estrogen receptors (ERs) and as a prognostic marker in mammary oncology it has contributed to an improvement in the proportion of correct clinical decisions. Protein-protein interactions among transcription factors are also the target of studies to correlate certain receptor functions with clinical outcome. Such interactions do not always result in quantitative changes of receptor function, but may involve qualitative modifications like translocations, mutations, isoforms and conformational changes, which could be reflected in the differing function of the receptor (Tora & Davidson
Free access

Eric Monsalves, Kyle Juraschka, Toru Tateno, Sameer Agnihotri, Sylvia L Asa, Shereen Ezzat, and Gelareh Zadeh

Pituitary adenomas are common intracranial neoplasms. Patients with these tumors exhibit a wide range of clinically challenging problems, stemming either from results of sellar mass effect in pituitary macroadenoma or the diverse effects of aberrant hormone production by adenoma cells. While some patients are cured/controlled by surgical resection and/or medical therapy, a proportion of patients exhibit tumors that are refractory to current modalities. New therapeutic approaches are needed for these patients. Activation of the AKT/phophotidylinositide-3-kinase pathway, including mTOR activation, is common in human neoplasia, and a number of therapeutic approaches are being employed to neutralize activation of this pathway in human cancer. This review examines the role of this pathway in pituitary tumors with respect to tumor biology and its potential role as a therapeutic target.

Free access

Iuri Martin Goemann, Mirian Romitti, Erika L Souza Meyer, Simone Magagnin Wajner, and Ana Luiza Maia

Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.