Search Results

You are looking at 31 - 40 of 535 items for

  • Abstract: MEN* x
  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • Abstract: Neoplasia x
  • All content x
Clear All Modify Search
Free access

Hugo Prazeres, Joana P Couto, Fernando Rodrigues, João Vinagre, Joana Torres, Vitor Trovisco, Teresa C Martins, Manuel Sobrinho-Simões, and Paula Soares

Multiple endocrine neoplasia type 2 and a subset of apparently sporadic medullary thyroid carcinoma (AS-MTC) are caused by germ line activating point mutations of the rearranged during transfection (RET) proto-oncogene. RET encodes a receptor with tyrosine kinase activity that targets several intracellular signaling cascades, such as RAS–RAF–ERK1/2, PIK3–AKT, and STAT transcription factors. The objective of this study was to assess the function of three germ line RET variants Arg886Trp, Ser649Leu, and Glu511Lys of undetermined pathogenic significance, which were found in three kindreds of isolated AS-MTC. For this purpose, we employed vectors expressing each of the RET variants and measured the number of NIH3T3 transformation foci and soft agar colonies, the degree of activation of known RET intracellular signaling targets (ERK1/2, STAT1, STAT3, and TCF4), and the extent of ERK1/2 inhibition on sorafenib treatment. We found that RET variants Arg886Trp and Glu511Lys have shown increased in vitro transforming potential in a glial-derived neurotrophic factor-dependent manner. In contrast, the Ser649Leu variant did not significantly increased the number of foci and agar colonies relative to wild-type RET (RET-WT). The variants Glu511Lys and Arg886Trp showed 10- and 12.5-fold ERK1/2 activation respectively, that was significantly higher than that observed for RET-WT (fivefold). Increased levels of STAT1 and TCF4 activation were only observed for RET Arg886Trp (2.5- and 3-fold versus 1.2- and 2-fold in RET-WT respectively). The three RET variants analyzed here were sensitive to treatment with sorafenib. In conclusion, our results allow to classify previously uncharacterized RET genotypes, which may be of use to define follow-up and therapeutic regimens.

Free access

S M Sadowski, C R C Pieterman, N D Perrier, F Triponez, and G D Valk

Metastatic duodenopancreatic neuro-endocrine tumors (dpNETs) are the most important disease-related cause of death in patients with multiple endocrine neoplasia type 1 (MEN1). Nonfunctioning pNETs (NF-pNETs) are highly prevalent in MEN1 and clinically heterogeneous. Therefore, management is controversial. Data on prognostic factors for risk stratification are limited. This systematic review aims to establish the current state of evidence regarding prognostic factors in MEN1-related NF-pNETs. We systematically searched four databases for studies assessing prognostic value of any factor on NF-pNET progression, development of distant metastases, and/or overall survival. In- and exclusion, critical appraisal and data-extraction were performed independently by two authors according to pre-defined criteria. Thirteen studies (370 unique patients) were included. Prognostic factors investigated were tumor size, timing of surgical resection, WHO grade, methylation, p27/p18 expression by immunohistochemistry (IHC), ARX/PDX1 IHC and alternative lengthening of telomeres. Results were complemented with evidence from studies in MEN1-related pNET for which data could not be separately extracted for NF-pNET and data from sporadic NF-pNET. We found that the most important prognostic factors used in clinical decision making in MEN1-related NF-pNETs are tumor size and grade. NF-pNETs <2 cm may be managed with watchful waiting, while surgical resection is advised for NF-pNETs ≥2 cm. Grade 2 NF-pNETs should be considered high risk. The most promising and MEN1-relevant avenues of prognostic research are multi-analyte circulating biomarkers, tissue-based molecular factors and imaging-based prognostication. Multi-institutional collaboration between clinical, translation and basic scientists with uniform data and biospecimen collection in prospective cohorts should advance the field.

Free access

P D Leotlela, A Jauch, H Holtgreve-Grez, and R V Thakker

Neuroendocrine tumours (NETs) originate in tissues that contain cells derived from the embryonic neural crest, neuroectoderm and endoderm. Thus, NETs occur at many sites in the body, although the majority occur within the gastro-entero-pancreatic axis and can be subdivided into those of foregut, midgut and hindgut origin. Amongst these, only those of midgut origin are generally argentaffin positive and secrete serotonin, and hence only these should be referred to as carcinoid tumours. NETs may occur as part of complex familial endocrine cancer syndromes, such as multiple endocrine neoplasia type 1 (MEN1), although the majority occur as non-familial (i.e. sporadic) isolated tumours. Molecular genetic studies have revealed that the development of NETs may involve different genes, each of which may be associated with several different abnormalities that include point mutations, gene deletions, DNA methylation, chromosomal losses and chromosomal gains. Indeed, the foregut, midgut and hindgut NETs develop via different molecular pathways. For example, foregut NETs have frequent deletions and mutations of the MEN1 gene, whereas midgut NETs have losses of chromosome 18, 11q and 16q and hindgut NETs express transforming growth factor-alpha and the epidermal growth factor receptor. Furthermore, in lung NETs, a loss of chromosome 3p is the most frequent change and p53 mutations and chromosomal loss of 5q21 are associated with more aggressive tumours and poor survival. In addition, methylation frequencies of retinoic acid receptor-beta, E-cadherin and RAS-associated domain family genes increase with the severity of lung NETs. Thus the development and progression of NETs is associated with specific genetic abnormalities that indicate the likely involvement of different molecular pathways.

Free access

C R C Pieterman, E B Conemans, K M A Dreijerink, J M de Laat, H Th M Timmers, M R Vriens, and G D Valk

Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene lead to loss of function of its protein product menin. In keeping with its tumor suppressor function in endocrine tissues, the majority of the MEN1-related neuroendocrine tumors (NETs) show loss of heterozygosity (LOH) on chromosome 11q13. In sporadic NETs, MEN1 mutations and LOH are also reported, indicating common pathways in tumor development. Prevalence of thymic NETs (thNETs) and pulmonary carcinoids in MEN1 patients is 2–8%. Pulmonary carcinoids may be underreported and research on natural history is limited, but disease-related mortality is low. thNETs have a high mortality rate. Duodenopancreatic NETs (dpNETs) are multiple, almost universally found at pathology, and associated with precursor lesions. Gastrinomas are usually located in the duodenal submucosa while other dpNETs are predominantly pancreatic. dpNETs are an important determinant of MEN1-related survival, with an estimated 10-year survival of 75%. Survival differs between subtypes and apart from tumor size there are no known prognostic factors. Natural history of nonfunctioning pancreatic NETs needs to be redefined because of increased detection of small tumors. MEN1-related gastrinomas seem to behave similar to their sporadic counterparts, while insulinomas seem to be more aggressive. Investigations into the molecular functions of menin have led to new insights into MEN1-related tumorigenesis. Menin is involved in gene transcription, both as an activator and repressor. It is part of chromatin-modifying protein complexes, indicating involvement of epigenetic pathways in MEN1-related NET development. Future basic and translational research aimed at NETs in large unbiased cohorts will clarify the role of menin in NET tumorigenesis and might lead to new therapeutic options.

Free access

Z Hamze, C Vercherat, A Bernigaud-Lacheretz, W Bazzi, R Bonnavion, J Lu, A Calender, C Pouponnot, P Bertolino, C Roche, R Stein, J Y Scoazec, C X Zhang, and M Cordier-Bussat

The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.

Free access

A Falchetti and M L Brandi

Multiple Endocrine Neoplasias type 1 (MEN 1) and type 2 (MEN 2) represent complex inherited (autosomal dominant traits) syndromes characterized by occurrence of distinct proliferative disorders of endocrine tissues, varying from hyperplasia to adenoma and carcinoma.

MEN 1 syndrome is characterized by parathyroid gland, anterior pituitary and endocrine pancreas tumors. Other endocrine and non endocrine tumors, such as carcinoids, lipomas, pinealomas, adrenocortical and thyroid follicular tumors, have been also described in MEN 1 patients occurring at higher frequency than in general population (Brandi ML et al. 1987). Recently also a spinal ependymoma has been found in a patient with MEN 1 syndrome (Kato H et al 1997)

MEN 2 syndromes recognize three main clinical entities, MEN 2A, characterized by medullary thyroid carcinoma (MTC), primary hyperparathyroidism (PHPT) and pheochromocytoma (PHEO); MEN 2B that exhibits MTC, usually developing sooner than the MEN 2A- associated one, pheochromocytoma, multiple neuromas of gastroenteric mucosa, myelinated corneal nerves (Gorlin RJ et al. 1968) and a typical marphanoid habitus; and familial medullary thyroid carcinoma only (FMTC) featuring by families with at least four members with MTC and no objective evidence of pheochromocytoma and parathyroid disease on screening of affected and at-risk members, as stated by the International RET Mutation Consortium (Larsson C et al. 1994).


This work was supported by grants of the Associazione Italiana per la Ricerca sul Cancro (to MLB), from CNR/PF ACRO (INV. 95.00316 PF 39) and by MURST 60% (to MLB).

Free access

Elizabeth G Grubbs, Ronald M Lechan, Beth Edeiken-Monroe, Gilbert J Cote, Chardria Trotter, Arthur S Tischler, and Robert F Gagel

Forty years ago, physicians caring for the J-kindred, a 100+ member family with multiple endocrine neoplasia type 2A (MEN2A), hypothesized that early thyroidectomy based on measurement of the biomarker calcitonin could cure patients at risk for development of medullary thyroid carcinoma (MTC). We re-evaluated 22 family members with proven RET proto-oncogene mutations (C634G) who underwent thyroidectomy and central lymphadenectomy between 1972 and 1994 based on stimulated calcitonin abnormalities. Current disease status was evaluated by serum calcitonin measurement and neck ultrasound in 18 of the 22 prospectively screened patients. The median age of the cohort at thyroidectomy was 16.5 years (range 9–24). The median duration of follow-up at the time of examination was 40 years (range 21–43) with a median current age of 52 years (range 34–65). Fifteen of the 18 patients had no detectable serum calcitonin (<2 pg/mL). Three had detectable serum calcitonin measurements, inappropriately elevated following total thyroidectomy. None of the 16 patients imaged had an abnormal ultrasound. Survival analysis shows no MTC-related deaths in the prospectively screened patients, whereas there were many in prior generations. Early thyroidectomy based on biomarker testing has rendered 15 of 18 MEN2A patients (83%) calcitonin-free with a median follow-up period of 40 years. There have been no deaths in the prospectively screened and thyroidectomized group. We conclude that early thyroidectomy and central lymph node dissection is an effective prophylactic treatment for hereditary MTC.

Free access

Francesca Carlomagno, Teresa Guida, Suresh Anaganti, Livia Provitera, Svend Kjaer, Neil Q McDonald, Anderson J Ryan, and Massimo Santoro

ZD6474 (vandetanib, Zactima, Astra Zeneca) is an anilinoquinazoline used to target the receptor tyrosine kinase RET in familial and sporadic thyroid carcinoma (IC50: 100 nM). The aim of this study was to identify molecular determinants of RET sensitivity to ZD6474. Here, we show that mutation of RET tyrosine 806 to cysteine (Y806C) induced RET kinase resistance to ZD6474 (IC50: 933 nM). Y806 maps close to the gate-keeper position at the RET kinase nucleotide-binding pocket. Although tyrosine 806 is a RET auto-phosphorylation site, its substitution to phenylalanine (Y806F) did not markedly affect RET susceptibility to ZD6474 (IC50: 87 nM), suggesting that phosphorylation of Y806 is not required for compound binding. Accordingly, the introduction of a phosphomimetic residue (Y806E) also caused resistance to ZD6474, albeit of a lesser degree (IC50: 512 nM) than the cysteine mutation. Y806C/E RET mutants were also resistant to ZD6474 with respect to intracellular signalling and activation of an AP1-responsive promoter. We conclude that Y806 is a molecular determinant of RET sensitivity to ZD6474. Y806C is a natural RET mutation identified in a patient affected by multiple endocrine neoplasia type 2B. Based on its rare occurrence, it is unlikely that Y806C will be a frequent cause of refractoriness to ZD6474; however, it may be envisaged that mutations at this site can mediate secondary resistance formation in patients treated with the compound.

Free access

Margarida M Moura, Branca M Cavaco, and Valeriano Leite

Medullary thyroid carcinoma (MTC) is a rare malignancy originating from the calcitonin-secreting parafollicular thyroid C cells. Approximately 75% of cases are sporadic. Rearranged during transfection (RET) proto-oncogene plays a crucial role in MTC development. Besides RET, other oncogenes commonly involved in the pathogenesis of human cancers have also been investigated in MTC. The family of human RAS genes includes the highly homologous HRAS, KRAS, and NRAS genes that encode three distinct proteins. Activating mutations in specific hotspots of the RAS genes are found in about 30% of all human cancers. In thyroid neoplasias, RAS gene point mutations, mainly in NRAS, are detected in benign and malignant tumors arising from the follicular epithelium. However, recent reports have also described RAS mutations in MTC, namely in HRAS and KRAS. Overall, the prevalence of RAS mutations in sporadic MTC varies between 0–43.3%, occurring usually in tumors with WT RET and rarely in those harboring a RET mutation, suggesting that activation of these proto-oncogenes represents alternative genetic events in sporadic MTC tumorigenesis. Thus, the assessment of RAS mutation status can be useful to define therapeutic strategies in RET WT MTC. MTC patients with RAS mutations have an intermediate risk for aggressive cancer, between those with RET mutations in exons 15 and 16, which are associated with the worst prognosis, and cases with other RET mutations, which have the most indolent course of the disease. Recent results from exome sequencing indicate that, besides mutations in RET, HRAS, and KRAS, no other recurrent driver mutations are present in MTC.

Free access

Mark Kidd, Ignat Drozdov, and Irvin Modlin

A multianalyte algorithmic assay (MAAA) identifies circulating neuroendocrine tumor (NET) transcripts (n=51) with a sensitivity/specificity of 98%/97%. We evaluated whether blood measurements correlated with tumor tissue transcript analysis. The latter were segregated into gene clusters (GC) that defined clinical ‘hallmarks’ of neoplasia. A MAAA/cluster integrated algorithm (CIA) was developed as a predictive activity index to define tumor behavior and outcome. We evaluated three groups. Group 1: publically available NET transcriptome databases (n=15; GeneProfiler). Group 2: prospectively collected tumors and matched blood samples (n=22; qRT-PCR). Group 3: prospective clinical blood samples, n=159: stable disease (SD): n=111 and progressive disease (PD): n=48. Regulatory network analysis, linear modeling, principal component analysis (PCA), and receiver operating characteristic analyses were used to delineate neoplasia ‘hallmarks’ and assess GC predictive utility. Our results demonstrated: group 1: NET transcriptomes identified (92%) genes elevated. Group 2: 98% genes elevated by qPCR (fold change >2, P<0.05). Correlation analysis of matched blood/tumor was highly significant (R 2=0.7, P<0.0001), and 58% of genes defined nine omic clusters (SSTRome, proliferome, signalome, metabolome, secretome, epigenome, plurome, and apoptome). Group 3: six clusters (SSTRome, proliferome, metabolome, secretome, epigenome, and plurome) differentiated SD from PD (area under the curve (AUC)=0.81). Integration with blood-algorithm amplified the AUC to 0.92±0.02 for differentiating PD and SD. The CIA defined a significantly lower SD score (34.1±2.6%) than in PD (84±2.8%, P<0.0001). In conclusion, circulating transcripts measurements reflect NET tissue values. Integration of biologically relevant GC differentiate SD from PD. Combination of GC data with the blood-algorithm predicted disease status in >92%. Blood transcript measurement predicts NET activity.