Search Results

You are looking at 41 - 50 of 397 items for

  • Abstract: Ovar* x
  • Abstract: Anastrazole x
  • Abstract: Fulvestrant x
  • Abstract: Estr* x
  • All content x
Clear All Modify Search
Free access

A Bardin, N Boulle, G Lazennec, F Vignon, and P Pujol

The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues, and the mitogenic effects of estrogen in these tissues (such as breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared with benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ or ERβ-specific gene induction could explain that ERβ has a differential effect on proliferation as compared with ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, such as ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review.

Restricted access

G Olt and R Mortel

Introduction Hormone-producing tumors of the ovary are extremely uncommon and are thus unfamiliar to most practicing gynecologists. Because of this it would seem ideal to organize this review by presenting signs and symptoms. Unfortunately, patients may have similar tumors but very different clinical manifestations depending on their age. Furthermore, many tumors may produce either estrogens or androgens. Therefore, for clarity, we have chosen to organize the review by histopathology, placing all tumors into either sex cord-stromal or germ cell classification. A summary organized by tumor type is presented in Table 1 and by reproductive status and presentation in Table 2. Diagnosis of hormone-secreting tumors is usually straightforward as most ovarian masses can be palpated during pelvic examination. Additionally, vaginal ultrasound can be very helpful in identifying very small, non-palpable ovarian masses. For extra-ovarian masses, computed tomography or magnetic resonance imaging can detect very small lesions. Rarely, ovarian tumors
Free access

S A Khan, D Bhandare, and R T Chatterton Jr

Recent developments in breast epithelial sampling techniques (nipple fluid aspiration, ductal lavage, and random fine needle aspiration) provide new opportunities for the acquisition of hormonal and cellular biomarker data in asymptomatic women, and thereby the possibility of developing a unified vision of how the hormonal environment of the breast may interact with the cellular expression of proteins, and with other evolving candidate markers of breast cancer risk. The purpose of this review is to integrate available information regarding cellular and breast fluid biomarkers of hormone action on the breast, to identify candidate biomarkers for studies of breast cancer risk and prevention. These include the estrogen receptors α andβ, markers of proliferative and apoptotic response, and protein markers of estrogen action in breast cells and nipple fluid. Studies of breast hormone levels in nipple aspiration fluid (NAF) show that estrone sulphate is present in large quantities in the normal breast, while the differences in serum ovarian steroids that are seen in pre- and postmenopausal women are blunted in NAF. The variability of several estradiol precursors in NAF over time is relatively small, a useful attribute of potential biomarkers of breast cancer risk, particularly if they are reversible with intervention in Phase 2 prevention trials. These studies are already providing new insights into the hormonal etiology of breast cancer, and should lead to the identification of robust, reversible biomarkers for use in breast cancer prevention studies.

Free access

Ann M Dorward, Kathryn L Shultz, and Wesley G Beamer

The reproductive hormone environment is an important influence upon spontaneous ovarian granulosa cell (GC) tumor development in genetically susceptible (SWR × SWXJ-9) F1 female mice: androgenic support during puberty stimulates tumorigenesis, while exposure to 17β-estradiol (E2) suppresses tumor initiation. We sought to determine whether gonadotropic stimulation was sufficient to initiate GC tumors in a grafted model system, and to determine the potential for dietary isoflavones (genistein and daidzein) as alternatives to E2 for tumor chemoprevention in vivo. Isolated ovaries from pre-pubertal (SWR × SWXJ-9) F1 females were transferred to the kidney capsule of host mice homozygous for the hypogonadal (hpg/hpg) and severe combined immunodeficiency (scid/scid) mutations. CB17; HPG-Prkdc scid Gnrh1 hpg/Bm host mice received either follicle-stimulating hormone (FSH), or a functional analog for LH human chorionic gonadotropin for 2 consecutive weeks, at which time the ovary grafts were examined for evidence of tumor initiation. LH analog administration, but not FSH, initiated GC tumorigenesis in the graft system, suggesting that the LH surge at puberty initiates GC tumor development in genetically susceptible female mice. To assess the chemopreventive potential of phytoestrogens, GC tumor frequency was compared between (SWR × SWXJ-9) F1 females reared on an isoflavone-free diet versus a diet supplemented with 125 μg/g each of the isoflavones daidzein and genistein. It was observed that (SWR × SWXJ-9) F1 females reared on isoflavone-supplemented diet maintained significantly higher GC tumor frequency (22%) than females reared on isoflavone-free diet (11%), and that non-tumor-bearing siblings reared on the isoflavones had significantly increased ovarian weight, indicative of an overall stimulation of the reproductive hormone axis. The stimulation of GC tumorigenesis by isoflavones, which contrasts with the chemopreventive action of E2 (2.5 mg/kg) administration during pubertal maturation, may result from general stimulation of ovarian growth, and the inability of the genistein and daidzein supplements to suppress LH secretion.

Open access

Petteri Ahtiainen, Victoria Sharp, Susana B Rulli, Adolfo Rivero-Müller, Veronika Mamaeva, Matias Röyttä, and Ilpo Huhtaniemi

The etiology of pituitary adenomas remains largely unknown, with the exception of involvement of estrogens in the formation of prolactinomas. We have examined the molecular pathogenesis of prolactin-producing pituitary adenomas in transgenic female mice expressing the human choriongonadotropin (hCG) β-subunit. The LH/CG bioactivity is elevated in the mice, with consequent highly stimulated ovarian progesterone (P4) production, in the face of normal estrogen secretion. Curiously, despite normal estrogen levels, large prolactinomas developed in these mice, and we provide here several lines of evidence that the elevated P4 levels are involved in the growth of these estrogen-dependent tumors. The antiprogestin mifepristone inhibited tumor growth, and combined postgonadectomy estradiol/P4 treatment was more effective than estrogen alone in inducing tumor growth. Evidence for direct growth-promoting effect of P4 was obtained from cultures of primary mouse pituitary cells and rat somatomammotroph GH3 cells. The mouse tumors and cultured cells revealed stimulation of the cyclin D1/cyclin-dependent kinase 4/retinoblastoma protein/transcription factor E2F1 pathway in the growth response to P4. If extrapolated to humans, and given the importance of endogenous P4 and synthetic progestins in female reproductive functions and their pharmacotherapy, it is relevant to revisit the potential role of these hormones in the origin and growth of prolactinomas.

Free access

Amanda Schech, Stephen Yu, Olga Goloubeva, John McLenithan, and Gauri Sabnis

Obesity is a risk factor for breast cancer progression. Breast cancer patients who are overweight or obese or have excess abdominal fat have an increased risk of local or distant recurrence and cancer-related death. Hormone depletion therapies can also cause weight gain, exacerbating the risk for these patients. To understand the effect of obesity on hormone-dependent human breast cancer tumors, we fed ovariectomized athymic nude mice a diet containing 45% kcal fat and 17% kcal sucrose (high fat sucrose diet (HFSD)), 10% kcal fat (low fat diet (LFD)), or a standard chow diet (chow). The mice fed the HFSD developed metabolic abnormalities consistent with the development of obesity such as weight gain, high fasting blood glucose, and impaired glucose tolerance. These mice also developed hyperinsulinemia and insulin resistance. The obese mice also had a higher tumor growth rate compared to the lean mice. Furthermore, the obese mice showed a significantly reduced responsiveness to letrozole. To understand the role of obesity in this reduced responsiveness, we examined the effect of insulin on the growth of MCF-7Ca cells in response to estrogen or letrozole. The presence of insulin rendered MCF-7Ca cells less responsive to estrogen and letrozole. Exogenous insulin treatment of MCF-7Ca cells also resulted in increased p-Akt as well as ligand-independent phosphorylation of ERα. These findings suggest that diet-induced obesity may result in reduced responsiveness of tumors to letrozole due to the development of hyperinsulinemia. We conclude that obesity influences the response and resistance of breast cancer tumors to aromatase inhibitor treatment.

Free access

Marc T Goodman, Galina Lurie, Pamela J Thompson, Katharine E McDuffie, and Michael E Carney

Although the role of estrogen in the etiology of ovarian cancer is uncertain, there is increasing evidence that hormone replacement therapy is a risk factor for ovarian malignancy. The production of estrogen involves the conversion of androgens via P450 aromatase, encoded by the CYP19A1 gene. Genetic variation in two CYP19A1 single-nucleotide polymorphisms (SNPs), rs749292 and rs727479, has been found to produce 10–20% increases in estrogen levels among postmenopausal women. We tested the hypothesis that these SNPs were associated with the risk of ovarian cancer in a population-based case–control study in Hawaii, including 367 histologically confirmed epithelial ovarian cancer cases and 602 age- and ethnicity-matched controls. The A allele of rs749292 was positively associated with ovarian cancer risk in a codominant model for all races combined (AG versus AA genotype: odds ratio (OR), 1.48 and 95% confidence interval (CI, 1.07–2.04); GG versus AA: OR, 1.87 (CI, 1.24–2.82); P trend=0.002). Similar significant associations of the rs749292 A allele on the risk of ovarian cancer were found among Caucasian and Japanese women. No relation of the rs727479 SNP to ovarian cancer risk was observed overall, although Caucasian women carrying the variant A allele compared with women with an CC genotype had an OR of 2.91 (CI, 1.15–7.37). These data suggest CYP19A1 variants may influence susceptibility to ovarian cancer.

Free access

W Yue, R J Santen, J P Wang, C J Hamilton, and L M Demers

In situ aromatization and enhanced uptake of estradiol from plasma are two potential mechanisms for maintenance of high concentrations of estradiol found in breast tumors of postmenopausal patients. To test the relative importance of these two mechanisms, a nude mouse model was established by inoculating aromatase (A+) and/or sham (A-) transfected MCF-7 cells into ovariectomized mice. Postmenopausal hormonal status was simulated by providing estradiol Silastic implants which clamped plasma estradiol levels at 5-20 pg/ml. We demonstrated that in situ aromatization rather than the uptake mechanism is the key determinant of tumor estradiol levels and tumor growth rate under conditions reflecting the postmenopausal state. The importance of intratumoral aromatase was also suggested by the findings that long-term estrogen deprivation increases sensitivity to estradiol and enhances aromatase activity in MCF-7 cells. The results of our in vivo and in vitro studies suggest that complete blockade of in situ aromatization in the breast would provide added benefit to postmenopausal breast cancer patients, especially those who relapse from antiestrogen therapy.

Free access

S Chen, D Zhou, T Okubo, Y C Kao, and C Yang

Aromatase has been shown to be expressed at a higher level in human breast cancer tissue than in normal breast tissue, by means of enzyme activity measurement, immunocytochemistry, and RT-PCR analysis. Cell culture including MCF-7 breast cancer cells, animal experiments using aromatase-transfected breast cancer cells, and transgenic mouse studies have demonstrated that estrogen production in situ plays a more important role than circulating estrogens in breast tumor promotion. In addition, tumor aromatase is believed to be able to stimulate breast cancer growth through both autocrine and paracrine pathways, as demonstrated by a three-dimensional cell culture study. RT-PCR and gene transcriptional studies have revealed that the aromatase promoter is switched from a glucocorticoid-stimulated promoter, I.4, in normal tissue to cAMP-stimulated promoters, I.3 and II, in cancerous tissue. Recently, we identified and characterized a cAMP-responsive element (CREaro) upstream from promoter I.3 by DNA deletion and mutational analyses. Our results from promoter functional analysis also demonstrated an interaction between the CREaro and the silencer element (S1) that was identified previously in our laboratory. In the presence of cAMP, the positive regulatory CREaro can overcome the action of the silencer on the function of promoter I.3. On the basis of results generated from our own and other laboratories, we propose that, in normal breast adipose stromal cells and fibroblasts, aromatase expression is driven by promoter I.4 (glucocorticoid dependent), and that the action of promoters I.3 and II is suppressed by the silencer negative regulatory element. However, in cancer cells and surrounding adipose stromal cells, the cAMP level increases, and aromatase promoters are switched to cAMP-dependent promoters - I.3 and II. Furthermore, we applied the yeast one-hybrid screening method to search for proteins interacting with the silencer element, S1. The major protein identified was ERRalpha-1; however, SF-1, which is present in the ovary, is not detected in breast cancer tissue. Using a reporter plasmid with the aromatase genomic fragment containing promoter I.3 and S1, in breast cancer SK-BR-3 cells, ERRalpha-1 was found to have a positive regulatory function. It is believed that the silencer element in the human aromatase gene may function differently in different tissues, as a result of distinct expression patterns of transcription factors.

Free access

Daniela Gallo, Elisabetta Mantuano, Manuela Fabrizi, Cristiano Ferlini, Simona Mozzetti, Ilaria De Stefano, and Giovanni Scambia

The study reported here was designed to determine whether a phytoestrogen-containing soy extract (SSE) could negate/overwhelm the inhibitory effects of ICI 182 780 on the growth of estrogen-sustained human breast cancer xenografts (MCF-7), in ovariectomized athymic mice. As expected, estradiol-supplemented tumors did not grow over the study period in ICI 182 780-treated females; concomitant administration of 50 mg/kg per day SSE slightly potentiated the inhibitory activity of the drug, while at 100 mg/kg per day, SSE partially negated ICI 182 780 activity. In keeping with these in vivo outcomes, we observed that the level of cyclin D1 (and progesterone receptor) in MCF-7 xenografts was considerably reduced by ICI 182 780, an effect enhanced by concomitant treatment with 50 SSE, but reduced by the higher dosage (i.e. 100 mg/kg per day). Thrombospondin-1 (TSP-1) and kallikrein 6 (KLK6) levels were also reduced following ICI 182 780, although to a lesser degree; again, combined anti-estrogen and SSE produced a dose-dependent regulation in TSP-1 and KLK6 tumor level, with a further reduction in the mRNA gene expression at 50 SSE (compared with ICI 182 780) and a partial reversion of the drug-induced down-regulation at 100 mg/kg per day. No modulation was detected in the serum concentration of IGF-1 (a potent mitogen for estrogen receptor-positive breast cancer cell lines) either upon treatment with ICI 182 780 or concomitant administration of the anti-estrogen with SSE. In conclusion, results from this study raise concerns about the consumption of isoflavone supplements in conjunction with ICI 182 780 therapy, in postmenopausal women with estrogen-dependent breast cancer.