Search Results

You are looking at 51 - 60 of 164 items for

  • Abstract: Hyperparathyroidism x
  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • All content x
Clear All Modify Search
Free access

Olga Husson, Harm R Haak, Liza N van Steenbergen, Willy-Anne Nieuwlaat, Boukje A C van Dijk, Grard A P Nieuwenhuijzen, Henrike Karim-Kos, Johannes L Kuijpens, Lonneke V van de Poll-Franse, and Jan Willem W Coebergh

The incidence of thyroid cancer (TC) is increasing worldwide, partly due to increased detection. We therefore assessed combined trends in incidence, survival and mortality of the various types of TC in The Netherlands between 1989 and 2009. We included all patients ≥15 years with TC, diagnosed in the period 1989–2009 and recorded in The Netherlands Cancer Registry (n=8021). Information on age, gender, date of diagnosis, histological type of tumour and tumour–node–metastasis classification was recorded. Mortality data (up to 1st January 2010) were derived from Statistics Netherlands. Annual percentages of change in incidence, mortality and relative survival were calculated. Since 1989 the incidence of TC increased significantly in The Netherlands (estimated annual percentage change (EAPC)=+1.7%). The incidence rates increased for all age groups (except for females >60 years), papillary tumours (EAPC=+3.5%), T1 and T3 TC (EAPC=+7.9 and +5.8% respectively). Incidence rates decreased for T4 TC (−2.3%) and remained stable for follicular, medullary anaplastic and T2 TC. Five-year relative survival rates remained stable for papillary (88%) and follicular (77%) TC, all age groups and T1–T3 TC (96, 94 and 80% respectively) and somewhat lower for T4 (53%), medullary (65%) and anaplastic TC (5%) in the 2004–2009 period compared with earlier periods. Mortality due to TC decreased (EAPC=−1.9%). TC detection and incidence has been rising in The Netherlands, while mortality rates are decreasing and survival rates remained stable or slightly decreasing.

Free access

Pablo Valderrabano, Laila Khazai, Marino E Leon, Zachary J Thompson, Zhenjun Ma, Christine H Chung, Julie E Hallanger-Johnson, Kristen J Otto, Kara D Rogers, Barbara A Centeno, and Bryan McIver

ThyroSeq v2 claims high positive (PPV) and negative (NPV) predictive values in a wide range of pretest risks of malignancy in indeterminate thyroid nodules (ITNs) (categories B-III and B-IV of the Bethesda system). We evaluated ThyroSeq v2 performance in a cohort of patients with ITNs seen at our Academic Cancer Center from September 2014 to April 2016, in light of the new diagnostic criteria for non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Our study included 182 patients (76% female) with 190 ITNs consecutively tested with ThyroSeq v2. Patient treatment followed our institutional thyroid nodule clinical pathway. Histologies of nodules with follicular variant papillary thyroid carcinoma or NIFTP diagnoses were reviewed, with reviewers blinded to molecular results. ThyroSeq v2 performance was calculated in nodules with histological confirmation. We identified a mutation in 24% (n = 45) of the nodules. Mutations in RAS were the most prevalent (n = 21), but the positive predictive value of this mutation was much lower (31%) than that in prior reports. In 102 resected ITNs, ThyroSeq v2 performance was as follows: sensitivity 70% (46–88), specificity 77% (66–85), PPV 42% (25–61) and NPV 91% (82–97). The performance in B-IV nodules was significantly better than that in B-III nodules (area under the curve 0.84 vs 0.57, respectively; P = 0.03), where it was uninformative. Further studies evaluating ThyroSeq v2 performance are needed, particularly in B-III.

Free access

Maria Trovato, Alessandra Ulivieri, Roberto Dominici, Rosaria Maddalena Ruggeri, Enrica Vitarelli, Salvatore Benvenga, Gaetano Barresi, Francesco Trimarchi, Ercole Brunetti, Aldo Vecchione, Mario Andreoli, and Salvatore Sciacchitano

A careful pathological examination often reveals the presence of different lesions at various stages of tumor progression and invasion, even in those thyroid glands presenting with solitary nodules. Each thyroid lesion is composed of many different cell types, reflecting the marked heterogeneity of normal thyroid tissue. Among the different chromosome regions altered in thyroid tumors, 7q21 appears to be specifically involved in malignant tumors, especially of the follicular type. This study was conducted to analyze the loss of heterozygosity (LOH) pattern at 7q21 in pure populations of cells from each single lesion harbored in surgically removed thyroid glands, and to evaluate its clinical significance. One hundred and forty-two thyroid glands were examined, all showing, as a common trait, a goitrous appearance associated with one single lesion in 114 cases and with more than one in the remaining 28 cases. A total number of 318 lesions was analyzed, consisting of 142 goiters (TG), 48 hyperplasias (TH), 80 adenomas (TA) and 48 carcinomas (TC). Five different types of cells were isolated by laser capture microdissection from each lesion. DNA was analyzed by PCR and polyacrylamide gel electrophoresis in search of LOH affecting five microsatellite markers, D7S660, D7S630, D7S492, D7S657, and D7S689. We detected LOH at 7q21 not only in thyroid malignant tumors but also in benign lesions. Allelic loss occurred exclusively in dark nucleus and eosinophilic cytoplasm cells, commonly observed in the follicular type of lesions. In these types of lesions allelic loss frequency increases along with neoplastic transformation (9% in TG, 41% in TH, 68% in TA and 100% in TC), and is directly correlated with thyroid gland volume as well as with the presence of multiple lesions. The highest LOH rate was observed for D7S492, indicating that the recurrent region of deletion was localized at the corresponding genetic locus at 7q21.2, in the same position where the common fragile site FRA7E was previously mapped. LOH at this locus represents an early event in the development of follicular TC and is associated with intense growth of thyroid glands.

Free access

Dang Vu-Phan, Vladimir Grachtchouk, Jingcheng Yu, Lesley A Colby, Max S Wicha, and Ronald J Koenig

A chromosomal translocation results in the production of a paired box 8–peroxisome proliferator-activated receptor gamma (PAX8–PPARG) fusion protein (PPFP) in ∼35% of follicular thyroid carcinomas. To examine the role of PPFP in thyroid oncogenesis, the fusion protein was stably expressed in the non-transformed rat thyroid cell line PCCL3. PPFP conferred on PCCL3 cells the ability to invade through Matrigel and to form colonies in anchorage-independent conditions. PPFP also increased the fraction of cells with Wnt/TCF-responsive green fluorescent protein reporter gene expression. This Wnt/TCF-activated population was enriched for colony-forming and invading cells. These actions of PPFP required a functional PPARG DNA binding domain (DBD) within PPFP and were further stimulated by PPARG agonists. These data indicate that PPFP, through its PPARG DBD, induces Wnt/TCF pathway activation in a subpopulation of cells, and these cells have properties of cellular transformation including increased invasiveness and anchorage-independent growth.

Restricted access

R W Blamey

Introduction Oophorectomy has been a proven treatment for breast cancer for just 100 years (Beatson 1896) but over the last ten ovarian suppression has become available, by using luteinizing hormone-releasing hormone (LHRH) agonists. When the agent ICI 118630 (now Zoladex; Zeneca, Macclesfield, Cheshire, UK), was introduced in the early 1980s, it was up for experiment as to whether it could replace oophorectomy and ovarian ablation. An LHRH agonist, it was known from experiments to block follicular activity so as to reduce plasma oestradiol and to decrease the size of target tissues such as the hamster uterus. Initial work The drug was investigated, together with Dr Rob Nicholson at the Tenovus Institute, Cardiff, as part of the Nottingham City Hospital clinical programme. Initially, it was administered as a subcutaneous daily injection, later in a depot monthly formulation. We showed that with both the daily injection and the
Free access

J D Lin, M J Liou, T C Chao, H F Weng, and Y S Ho

From 1977 through 1995, 1,013 thyroid carcinoma patients received treatment and were followed up at Chang Gung Medical Center in Taiwan. To evaluate the prognostic variables of papillary and follicular thyroid carcinomas with limited lymph node metastases, a retrospective review of these patients was performed. Of these patients, 910 had papillary or follicular thyroid carcinoma, and 119 patients were categorized as clinical stage 2 with limited neck lymph node metastases only at the time of diagnosis. The patients were categorized into two groups as no recurrence and local recurrence or distant metastasis at the end of 1997. After the operations, radioactive iodide (131I) treatments were performed in 114 patients and external radiotherapy for neck region or distant metastases in 18 patients. The median follow-up period of these patients was 5.4 years. Clinical variables were coded in our computer for statistical analysis. After the treatments, 93 patients remained disease-free; 10 were in stage 2; 5 in stage 3; and 11 aggravated to stage 4. Of the clinical variables, age, post-operative first 1311 uptake scans, and 1-month post-operative thyroglobulin levels revealed statistically significant differences between the group which improved and the group which did not. During the follow-up period, five patients died; three patients died of thyroid cancer and two died of intercurrent diseases. Patients with papillary thyroid carcinoma revealed a higher percentage of lymph node metastases. Although limited lymph node metastases did not influence survival rate, patients with poor prognostic factors need more aggressive treatment to avoid progression of the cancer.

Free access

Kirk Jensen, Aneeta Patel, Joanna Klubo-Gwiezdzinska, Andrew Bauer, and Vasyl Vasko

Resistance to anoikis (matrix deprivation-induced apoptosis) is a critical component of the metastatic cascade. Molecular mechanisms underlying resistance to anoikis have not been reported in thyroid cancer cells. For an in vitro model of anoikis, we cultured follicular, papillary, and anaplastic thyroid cancer cell lines on poly-HEMA-treated low-adherent plates. We also performed immunohistochemical analysis of human cancer cells that had infiltrated blood and/or lymphatic vessels. Matrix deprivation was associated with establishment of contacts between floating thyroid cancer cells and formation of multi-cellular spheroids. This process was associated with activation of gap junctional transfer. Increased expression of the gap junction molecule Connexin43 was found in papillary and anaplastic cancer cells forming spheroids. All non-adherent cancer cells showed a lower proliferation rate compared with adherent cells but were more resistant to serum deprivation. AKT was constitutively activated in cancer cells forming spheroids. Inhibition of gap junctional transfer through Connexin43 silencing, or by treatment with the gap junction disruptor carbenoxolone, resulted in loss of pAKT and induction of apoptosis in a cell-type-specific manner. In human thyroid tissue, cancer cells that had infiltrated blood vessels showed morphological similarity to cancer cells forming spheroids in vitro. Intra-vascular cancer cells demonstrated prominent AKT activation in papillary and follicular cancers. Increased Connexin43 immunoreactivity was observed only in intra-vascular papillary cancer cells. Our data demonstrate that establishment of inter-cellular communication contributes to thyroid cancer cell resistance to anoikis. These findings suggest that disruption of gap junctional transfer could represent a potential therapeutic strategy for prevention of metastases.

Free access

Federica Panebianco, Alyaksandr V Nikitski, Marina N Nikiforova, Cihan Kaya, Linwah Yip, Vincenzo Condello, Abigail I Wald, Yuri E Nikiforov, and Simion I Chiosea

ALK fusions are found in various tumors, including thyroid cancer, and serve as a diagnostic marker and therapeutic target. Spectrum and outcomes of ALK fusions found in thyroid nodules and cancer are not fully characterized. We report a series of 44 ALK-translocated thyroid neoplasms, including 31 identified preoperatively in thyroid fine-needle aspirates (FNA). The average patients’ age was 43 years (range, 8–76 years); only one with radiation history. All 19 resected thyroid nodules with ALK fusion identified preoperatively were malignant. Among nodules with known surgical pathology (n = 32), 84% were papillary thyroid carcinomas (PTCs) and 16% poorly differentiated thyroid carcinomas (PDTCs). PTCs showed infiltrative growth with follicular architecture seen exclusively (30%) or in combination with papillary and/or solid growth (37%). Tumor multifocality was seen in 10 (31%) PTC cases. Most PDTC had a well-differentiated PTC component. Lymph node metastases were identified in 10/18 (56%) patients with neck dissection. The most common ALK fusion partners were STRN (n = 22) and EML4 (n = 17). In five cases, novel ALK fusion partners were discovered. All five PDTCs carried STRN-ALK fusion. On follow-up, ten patients were free of disease at 2–108 months, whereas two patients with PDTC died of disease. In summary, ALK fusion-positive thyroid carcinomas are typically infiltrative PTC with common follicular growth, which may show tumor dedifferentiation associated with increased mortality. Compared to EML4-ALK, STRN-ALK may be more common in PDTC, and ~10% of ALK fusions occur to rare gene partners. When ALK fusion is detected preoperatively in FNA samples, malignancy should be expected.

Free access

D Bonofiglio, H Qi, S Gabriele, S Catalano, S Aquila, M Belmonte, and S Andò

Peroxisome proliferator-activated receptor γ (PPARγ) has been demonstrated to be anti-neoplastic against various human tumors. The aim of this study was to delineate the molecular mechanism underlying PPARγ ligand rosiglitazone (BRL) antiproliferative effects in follicular WRO and anaplastic FRO human thyroid carcinoma cells. BRL upregulated the p21Cip1/WAF1 levels in the two thyroid cancer cells, while did not modify the p53 protein content. Different evidences indicate that the p21Cip1/WAF1 upregulation by BRL requires a functional PPARγ, since it was reversed by silencing PPARγ and pretreatment with GW9662, an irreversible PPARγ antagonist. Transient transfection assays showed that BRL triggered the transcriptional activity of p21Cip1/WAF1 promoter gene in a p53-independent way, being a p21Cip1/WAF1 promoter construct deleted in the p53 sites still activated by BRL. The Sp1 inhibitor mithramycin silenced the p21Cip1/WAF1 promoter activity suggesting an important role of Sp1 in mediating BRL activation. The electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays evidenced a functional interaction between PPARγ and Sp1 in regulating p21Cip1/WAF1. Intriguingly, ChIP analysis revealed in the p21Cip1/WAF1 gene promoter an increased recruitment of the RNA Pol II associated with an increased histone H3 acetylation and a reduced H3 methylation. The biological event, consistent with PPARγ-induced WRO and FRO cell growth inhibition, was reversed by p21Cip1/WAF1 antisense oligonucleotides and was confirmed by increasing the PPARγ expression, suggesting a crucial role exerted by p21Cip1/WAF1 in PPARγ action. Our results further candidate BRL as a potential agent able to inhibit tumor progression of follicular and anaplastic thyroid carcinoma.

Free access

Stéphanie Durand, Carole Ferraro-Peyret, Mireille Joufre, Annie Chave, Françoise Borson-Chazot, Samia Selmi-Ruby, and Bernard Rousset

About 60–70% of papillary thyroid carcinomas (PTC) present a BRAF T1799A gene mutation or a rearrangement of RET gene (RET/PTC). In this study, we examined whether PTC without BRAF T1799A mutation and without RET/PTC rearrangement named PTC-ga(−) were distinguishable from PTC-ga(+) (with one or the other gene alteration) on the basis of gene expression characteristics. We analyzed the mutational state of 116 PTC and we compared gene expression profiles of PTC-ga(+) and PTC-ga(−) from data of a 200 gene macroarray and quantitative PCR. Seventy five PTC were PTC-ga(+) and 41 were PTC-ga(−). Unsupervised analyses of macroarray data by hierarchical clustering led to a complete segregation of PTC-ga(+) and PTC-ga(−). In a series of 42 genes previously recognized as PTC ‘marker’ genes, 22 were found to be expressed at a comparable level in PTC-ga(−) and normal tissue. Thyroid-specific genes, TPO, TG, DIO1, and DIO2 were under-expressed in PTC-ga(+) but expressed at a normal level in PTC-ga(−). A few genes including DUOX1 and DUOX2 were selectively dys-regulated in PTC-ga(−). Tumor grade of PTC-ga(−) was lower than that of PTC-ga(+). There was a strong association between the mutational state and histiotype of PTC; 81% of PTC follicular variants were corresponded to PTC-ga(−), whereas 84% of PTC of classical form were PTC-ga(+). In conclusion, we show that PTC without BRAF T1799A mutation or RET/PTC rearrangement, mainly corresponding to follicular variants, maintain a thyroid differentiation expression level close to that of normal tissue and should be of better prognosis than PTC with one or the other gene alteration.