Search Results

You are looking at 91 - 100 of 155 items for

  • Abstract: Pituitary x
  • Abstract: Hypothalamus x
  • Abstract: Notch x
  • Abstract: Hypopituitarism x
  • Abstract: acromegaly x
  • All content x
Clear All Modify Search
Free access

Christina Wei and Elizabeth C Crowne

Endocrine abnormalities are common among childhood cancer survivors. Abnormalities of the hypothalamic–pituitary–adrenal axis (HPAA) are relatively less common, but the consequences are severe if missed. Patients with tumours located and/or had surgery performed near the hypothalamic–pituitary region and those treated with an accumulative cranial radiotherapy dose of over 30 Gy are most at risk of adrenocorticotrophic hormone (ACTH) deficiency. Primary adrenal insufficiency may occur in patients with tumours located in or involving one or both adrenals. The effects of adjunct therapies also need to be considered, particularly, new immunotherapies. High-dose and/or prolonged courses of glucocorticoid treatment can result in secondary adrenal insufficiency, which may take months to resolve and hence reassessment is important to ensure patients are not left on long-term replacement steroids inappropriately. The prevalence and cumulative incidences of HPAA dysfunction are difficult to quantify because of its non-specific presentation and lack of consensus regarding its investigations. The insulin tolerance test remains the gold standard for the diagnosis of central cortisol deficiency, but due to its risks, alternative methods with reduced diagnostic sensitivities are often used and must be interpreted with caution. ACTH deficiency may develop many years after the completion of oncological treatment alongside other pituitary hormone deficiencies. It is essential that health professionals involved in the long-term follow-up of childhood cancer survivors are aware of individuals at risk of developing HPAA dysfunction and implement appropriate monitoring and treatment.

Free access

Dorota Dworakowska and Ashley B Grossman

Pituitary adenomas are unique in multiple ways. They are rarely malignant in terms of metastases; yet, they may be aggressive. Their cancerous potential is defined in a classic oncological way by the ability to metastasise, and therefore, it has been crucial to differentiate this process from aggressive behaviour, characterised as a particularly invasive and/or recurrent behaviour and resistance to common modalities of therapy. Recently, however, important changes have been introduced to the diagnosis and management of aggressive and malignant pituitary tumours including the 4th edition of the World Health Organization (WHO) classification for endocrine tumours (2017) as well as ESE Clinical Guidelines (2018), although an attempt to establish predictive and/or prognostic markers of clinical aggressiveness remains difficult. In this review, we focus on a group of pituitary tumours causing significant problems in clinical practice and requiring multidisciplinary input. We summarise updates in definitions of tumour invasiveness, aggressiveness and malignant transformation, as well as histological classification, and emphasise the new considerations regarding aggressive and malignant potential and its relationship to therapeutic strategies.

Free access

Fateme Salehi, Kalman Kovacs, Bernd W Scheithauer, Ricardo V Lloyd, and Michael Cusimano

Pituitary tumor-transforming gene (PTTG) was only recently discovered. Its overexpression occurs in a wide variety of endocrine and non-endocrine tumors, including ones of pituitary, thyroid, ovary, breast, prostate, lung, esophagus, colon, and the central nervous system. It affects tumor invasiveness and recurrence in several systems, functions as a securin during cell cycle progression, and inhibits premature sister chromatid separation. PTTG is involved in multiple cellular pathways, including proliferation, DNA repair, transformation, angiogenesis induction, invasion, and the induction of genetic instability. In thyroid carcinomas, PTTG expression is a marker of invasiveness. PTTG is overexpressed in most pituitary adenomas, where it appears to correlate with recurrence and angiogenesis. Increasing evidence also points to the role of PTTG in endocrine organ development. For example, PTTG knockout mice show defective pancreatic β-cell proliferation. Herein, we review the current knowledge regarding PTTG-mediated pathways based on evidence from in vivo and in vitro studies as well as knockout mice models. We also summarize the issue of PTTG expression and its correlation with clinicopathologic parameters in patients with neoplasms, particularly of endocrine organs. In addition, we discuss in vitro and in vivo therapeutic models targeting PTTG overexpression.

Free access

B M Arafah and M P Nasrallah

Pituitary tumors are frequently encountered intracranial neoplasms. They present with a variety of clinical manifestations that include symptoms and signs of excessive hormone secretion by the tumor, signs of hormone deficits by the normal pituitary gland and others related to expansion of the tumor mass and the resulting compression of surrounding structures such as the optic chiasm and cranial nerves. Advances in molecular biology, immunocytochemical staining and imaging, and the introduction of new treatment options have improved our understanding of the natural history of these adenomas and their management. Available treatments include surgical, medical and radiation therapy. Although the primary treatment for each tumor type may vary, it is important to consider all available options and select the most applicable for that patient. The interaction of all members of management team, including the primary care provider, the endocrinologist and the neurosurgeon in selecting the treatment course can only improve therapeutic outcome. Regardless of the initial choice of treatment,follow-up of all patients should be maintained indefinitely. The managing physician should be familiar with the natural history and long-term complications of pituitary adenomas, and with the side effects of treatments given over the years.

Free access

M L Jaffrain-Rea, D Di Stefano, G Minniti, V Esposito, A Bultrini, E Ferretti, A Santoro, L Faticanti Scucchi, A Gulino, and G Cantore

Pituitary tumours are usually benign neoplasia, but may have a locally aggressive or malignant evolution. This study aimed to identify factors which mostly influence their proliferative activity, in order to clarify its value for clinical and research purposes. The proliferative index was determined in a prospective series of 132 pituitary tumours as the percentage of monoclonal antibody MIB-1-immunopositive cells and referred to as the MIB-1 labelling index (LI). Its distribution was analysed according to both univariate and multivariate models. A life-threatening pituitary tumour is presented separately. The mean LI was 1.24+/-1.59%, with significant differences between clinically secreting (CS) and clinically non-secreting (CNS) adenomas. In CS adenomas (n=65), LI was highly variable and markedly influenced by pre-operative pharmacological treatment (0.80+/-1.03 vs 2.06+/-2.39% in treated vs untreated cases, P=0.009); it decreased with patient's age (P=0.025, r=0.28) and increased with tumour volume and invasiveness. The influence of pre-operative treatment and macroscopic features on LI in this group was confirmed by multivariate analysis. In CNS adenomas (n=67), LI distribution was less variable than in CS adenomas (P<0.0001), it was age-independent and correlations with tumour volume, invasiveness or recurrence did not reach significance. In a rapidly growing parasellar tumour, the mean LI was 24% at first surgery and exceeded 50% at second surgery performed 4 months later. LI should be interpreted according to hormone secretion and pre-operative treatment. Unusually high LI values deserve particular attention.

Free access

Brian Harding, Manuel C Lemos, Anita A C Reed, Gerard V Walls, Jeshmi Jeyabalan, Michael R Bowl, Hilda Tateossian, Nicky Sullivan, Tertius Hough, William D Fraser, Olaf Ansorge, Michael T Cheeseman, and Rajesh V Thakker

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized in man by parathyroid, pancreatic, pituitary and adrenal tumours. The MEN1 gene encodes a 610-amino acid protein (menin) which is a tumour suppressor. To investigate the in vivo role of menin, we developed a mouse model, by deleting Men1 exons 1 and 2 and investigated this for MEN1-associated tumours and serum abnormalities. Men1 +/− mice were viable and fertile, and 220 Men1 +/− and 94 Men1 +/+ mice were studied between the ages of 3 and 21 months. Survival in Men1 +/− mice was significantly lower than in Men1 +/+ mice (<68% vs >85%, P<0.01). Men1 +/− mice developed, by 9 months of age, parathyroid hyperplasia, pancreatic tumours which were mostly insulinomas, by 12 months of age, pituitary tumours which were mostly prolactinomas, and by 15 months parathyroid adenomas and adrenal cortical tumours. Loss of heterozygosity and menin expression was demonstrated in the tumours, consistent with a tumour suppressor role for the Men1 gene. Men1 +/− mice with parathyroid neoplasms were hypercalcaemic and hypophosphataemic, with inappropriately normal serum parathyroid hormone concentrations. Pancreatic and pituitary tumours expressed chromogranin A (CgA), somatostatin receptor type 2 and vascular endothelial growth factor-A. Serum CgA concentrations in Men1 +/− mice were not elevated. Adrenocortical tumours, which immunostained for 3-β-hydroxysteroid dehydrogenase, developed in seven Men1 +/− mice, but resulted in hypercorticosteronaemia in one out of the four mice that were investigated. Thus, these Men1 +/− mice are representative of MEN1 in man, and will help in investigating molecular mechanisms and treatments for endocrine tumours.

Free access

Cuong V Duong, Richard D Emes, Frank Wessely, Kiren Yacqub-Usman, Richard N Clayton, and William E Farrell

DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.

Free access

W E Farrell, D J Simpson, S J Frost, and R N Clayton

Methylation is essential for embryonic development, however aberrant methylation of CpG islands associated with the tumour suppressor genes (TSGs) and leading to gene silencing is found in numerous tumour types. The TSG p16/CDKN2A is involved in the genesis of many tumour types and frequent methylation of the CpG island of the p16/CDKN2A gene is associated with loss of protein expression in pituitary tumours. In addition, CpG sites are mutational hotspots and abnormal methylation patterns have been shown to lead to genetic instability, predisposing to, and preceding allelic loss. Although several studies of pituitary tumours have shown loss of genetic material at known and putative TSGs loci, studies of the retained alleles have revealed infrequent mutation. Equally, for several other TSGs no mechanisms have been described for their reduced expression. Methylation may represent a unifying theme, responsible in some cases for an absence or reduced expression and in other cases predisposing to allelic loss that may or may not encompass a TSG. In several tumour types treatment of tumours or their cognate cell lines with demethylating agents induces expression of previously methylated genes. Using the mouse corticotroph cell line AtT20 as a model system, transfection studies showed restoration of growth control through induction of ectopically expressed p16/CDKN2A. These effects were reversed by prior in vitro methylation of the constructs' CpG sites within the coding region of this gene. Methylation of an otherwise unmethylated CpG island renders a gene transcriptionally incompetent and clinically these genes represent attractive therapeutic targets since the gene is neither lost nor mutated, but may be reactivated. Future studies will no doubt describe more efficacious pharmacological interventions and identify the mechanisms responsible for the abnormal methylation patterns seen in tumours including those of pituitary origin.

Free access

Michael Solarski, Fabio Rotondo, William D Foulkes, John R Priest, Luis V Syro, Henriett Butz, Michael D Cusimano, and Kalman Kovacs

In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.

Free access

Wassim Chemaitilly and Charles A Sklar

Endocrine disturbances are among the most frequently reported complications in childhood cancer survivors, affecting between 20 and 50% of individuals who survive into adulthood. Most endocrine complications are the result of prior cancer treatments, especially radiotherapy. The objective of the present review is to discuss the main endocrine complications observed in this population, including disorders of the hypothalamic–pituitary axis, disorders of pubertal development, thyroid dysfunction, gonadal dysfunction, decreased bone mineral density, obesity, and alterations in glucose metabolism with a special focus on recent findings reported from the Childhood Cancer Survivor Study.