Search Results

You are looking at 51 - 60 of 155 items for

  • Abstract: Pituitary x
  • Abstract: Hypothalamus x
  • Abstract: Notch x
  • Abstract: Hypopituitarism x
  • Abstract: acromegaly x
  • All content x
Clear All Modify Search
Free access

K Revill, K J Dudley, R N Clayton, A M McNicol, and W E Farrell

The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where ∼50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.

Free access

Ivana De Martino, Rosa Visone, Dario Palmieri, Paolo Cappabianca, Paolo Chieffi, Floriana Forzati, Antonio Barbieri, Mogens Kruhoffer, Gaetano Lombardi, Alfredo Fusco, and Monica Fedele

The high-mobility group A (HMGA) family of proteins orchestrates the assembly of nucleoprotein structures playing important roles in gene transcription, recombination, and chromatin structure through a complex network of protein–DNA and protein–protein interactions. Recently, we have generated transgenic mice carrying wild type or truncated HMGA2 genes under the transcriptional control of the cytomegalovirus promoter. These mice developed pituitary adenomas secreting prolactin and GH mainly due to an increased E2F1 activity, directly consequent to the HMGA2 overexpression. To identify other genes involved in the process of pituitary tumorigenesis induced by the HMGA2 gene, in this study we have analyzed the gene expression profile of three HMGA2-pituitary adenomas in comparison with a pool of ten normal pituitary glands from control mice, using the Affymetrix MG MU11K oligonucleotide array representing ~13 000 unique genes. We have identified 82 transcripts that increased and 72 transcripts that decreased at least four-fold in all the mice pituitary adenomas analyzed compared with normal pituitary glands. Among these genes, we focused our attention on the Mia/Cd-rap gene, whose expression was essentially suppressed in all of the pituitary adenomas tested by the microarray. We demonstrated that the HMGA proteins directly bind to the promoter of the Mia/Cd-rap gene and are able to downregulate its expression. In order to understand a possible role of Mia/Cd-rap in pituitary cell growth, we performed a colony assay in GH3 and GH4 cells. Interestingly, Mia/Cd-rap expression inhibits their proliferation, suggesting a potential tumor suppressor role of Mia/Cd-rap in pituitary cells.

Free access

V V Vax, M Gueorguiev, I I Dedov, A B Grossman, and M Korbonits

The oncogenes and/or tumour suppressor genes which may be involved in the transformation process for the vast majority of pituitary tumours remain unknown. There is substantial evidence for derangement of cell cycle control in such tumours, but cell cycle protein mutations identified in other human malignancies are restricted to only a very small subset of sporadic pituitary neoplasms. Krüppel-like factors are DNA-binding transcriptional regulators with diverse effects including the upregulation of the cell cycle protein p21(WAF1/CIP1). It has been reported that the Krüppel-like transcription factor 6 (KLF6) gene is mutated in a proportion (15-55%) of human prostate cancers, and more recent data are emerging regarding mutated KLF6 in nasopharyngeal carcinomas, astrocytoid gliomas and colorectal cancer. We therefore speculated that other tumours such as pituitary adenomas might also harbour such mutations that may be involved in the control of cell proliferation in the pituitary. The aim of the current study was thus to analyse the KLF6 gene for mutations in sporadic pituitary tumours. We analysed 60 pituitary adenomas (15 GH-, four ACTH-, two PRL-secreting and 39 non-functioning) with direct sequence analysis of exons 2 and 3 of the KLF6 gene, the region where most of the previously described mutations are located. Three non-functioning pituitary adenomas of the 60 pituitary tumours (5%) had two identical sequence changes in exon 2 (missense mutation Val165Met, 523G-->A and a silent substitution in Ser77Ser codon 261C-->T). Analysis of genomic DNA extracted from peripheral lymphocytes in one patient confirmed these changes to be present in the germline and they therefore probably represent polymorphisms, although we cannot exclude the possibility that these are predisposing germline mutations. We conclude that mutations of the KLF6 gene are unlikely to play an important role in sporadic pituitary tumorigenesis.

Free access

Graeme B Bolger, Mariana F Bizzi, Sergio V Pinheiro, Giampaolo Trivellin, Lisa Smoot, Mary-Ann Accavitti, Márta Korbonits, and Antonio Ribeiro-Oliveira Jr

PDE4 cyclic nucleotide phosphodiesterases regulate cAMP abundance in cells and therefore regulate numerous processes, including cell growth and differentiation. The rat PDE4A5 isoform (human homolog PDE4A4) interacts with the AIP protein (also called XAP2 or ARA-9). Germline mutations in AIP occur in approximately 20% of patients with Familial Isolated Pituitary Adenoma (FIPA) and 20% of childhood-onset simplex somatotroph adenomas. We therefore examined the protein expression of PDE4A4 and the closely related isoform PDE4A8 in normal human pituitary tissue and in pituitary adenomas. PDE4A4 had low expression in normal pituitary but was significantly overexpressed in somatotroph, lactotroph, corticotroph and clinically nonfunctioning gonadotroph adenomas (P<0.0001 for all subtypes). Likewise, PDE4A8 was expressed in normal pituitary and was also significantly overexpressed in the adenoma subtypes (P<0.0001 for all). Among the different adenoma subtypes, corticotroph and lactotroph adenomas were the highest and lowest expressed for PDE4A4, respectively, whereas the opposite was observed for PDE4A8. Naturally occurring oncogenic variants in AIP were shown by a two-hybrid assay to disrupt the ability of AIP to interact with PDE4A5. A reverse two-hybrid screen identified numerous additional variants in the tetratricopeptide repeat (TPR) region of AIP that also disrupted its ability to interact with PDE4A5. The expression of PDE4A4 and PDE4A8 in normal pituitary, their increased expression in adenomatous pituitary cells where AIP is meant to participate, and the disruption of the PDE4A4–AIP interaction by AIP mutants may play a role in pituitary tumorigenesis.

Free access

Toru Tateno, Tae Nakano-Tateno, Shereen Ezzat, and Sylvia L Asa

The proteoglycan neuron-glial antigen 2 (NG2) is expressed by oligodendrocyte progenitors, pericytes, and some cancerous cells where it is implicated in tumor development. We examined mice with NG2-driven pRb inactivation. Unexpectedly, NG2-Cre:pRb flox/flox mice developed pituitary tumors with high penetrance. Adenohypophysial neoplasms developed initially as multifocal lesions; by 1 year, large tumors showed brain invasion. Immunohistochemistry identified these as Pit1-lineage neoplasms, with variable immunoreactivity for growth hormone, prolactin, thyrotropin, and α-subunit of glycoprotein hormones. Other than modest hyperprolactinemia, circulating hormone levels were not elevated. To determine the role of NG2 in the pituitary, we investigated NG2 expression. Immunoreactivity was identified in anterior and posterior lobes but not in the intermediate lobe of the mouse pituitary; in the adenohypophysis, folliculostellate cells had the strongest NG2 immunoreactivity but showed no proliferation in response to Rb inactivation. Pit1-positive adenohypophysial cells were positive for NG2, but corticotroph and gonadotroph cells were negative. RT-PCR revealed NG2 expression in normal human pituitary and human pituitary tumors; immunohistochemistry localized NG2 in nontumorous human adenohypophysis with strongest positivity in folliculostellate cells, and in tumors of all types except corticotrophs. Functional studies in GH4 mammosomatotrophs showed that NG2 increases prolactin (PRL), reduces growth hormone (GH) expression, and enhances cell adhesion without influencing proliferation. In conclusion, NG2-driven pRb inactivation results in pituitary tumors that mimic endocrinologically inactive Pit1-lineage human pituitary tumors. This model identifies a role for NG2 in pituitary cell-type-specific functions and unmasks a protective role from Rb inactivation in folliculostellate cells; it can be used for further research, including preclinical testing of novel therapies.

Free access

W E Farrell

Pituitary tumours are common intracranial neoplasms that cause significant morbidity through mass effects and/or the inappropriate secretion of pituitary hormones. Despite a considerable literature detailing potential pathogenic changes in these tumours, their aetiology remains largely unresolved. Recent studies have employed genome-wide profiling towards the identification of novel genes and pathways that are inappropriately expressed or regulated in this tumour type. The techniques employed vary in their complexity and interpretation; however, many of the findings from these types of studies have identified novel genes with potential and, in some cases, proven roles in pituitary tumorigenesis. These studies include comparative genomic hybridization, whole genome-wide allelotyping and methodologies for identification of novel genes associated with epigenetic silencing. In addition, differential display methodologies have been instrumental in the identification of transcripts inappropriately expressed including, pituitary tumour transforming gene, growth arrest and DNA damage-inducible protein (GADD)45γ and a maternal expressed gene 3 isoform, which in some cases have proven roles in pituitary tumorigenesis. Although few studies of whole genome transcript analysis, as determined by microarray or gene-chip technologies, are reported, these studies of human pituitary, in some cases combined with proteomics, are yielding useful data. In addition, these types of investigation have been applied to several animal models of pituitary tumorigenesis, and in these cases novel genes are highlighted as showing significant change. The identification of the initiating events responsible for the transformation of a normal pituitary cell into one with unrestrained proliferative capacity has so far eluded us. No doubt, these new technologies allowing an essentially unbiased genome-wide analysis, perhaps in combination with animal models that display a preceding hyperplasia, will allow us to identify genes critical to tumour evolution and progression.

Free access

Robert C Fowkes and George Vlotides

Angiogenic markers in pituitary adenomas remain enigmatic in terms of their function in tumorigenesis, despite being upregulated by the normal physiological trigger of hypoxia. In this issue of Endocrine-Related Cancer, Shan et al. report that the novel RWD domain containing protein, RWD-containing sumoylation enhancer, is expressed in human pituitary adenomas and plays a pivotal role in regulating the hypoxia-inducible factor 1α–vascular endothelial growth factor response to hypoxia.

Free access

C Schaaf, B Shan, M Buchfelder, M Losa, J Kreutzer, W Rachinger, G K Stalla, T Schilling, E Arzt, M J Perone, and U Renner

Curcumin (diferuloylmethane) is the active ingredient of the spice plant Curcuma longa and has been shown to act anti-tumorigenic in different types of tumours. Therefore, we have studied its effect in pituitary tumour cell lines and adenomas. Proliferation of lactosomatotroph GH3 and somatotroph MtT/S rat pituitary cells as well as of corticotroph AtT20 mouse pituitary cells was inhibited by curcumin in monolayer cell culture and in colony formation assay in soft agar. Fluorescence-activated cell sorting (FACS) analysis demonstrated curcumin-induced cell cycle arrest at G2/M. Analysis of cell cycle proteins by immunoblotting showed reduction in cyclin D1, cyclin-dependent kinase 4 and no change in p27kip. FACS analysis with Annexin V-FITC/7-aminoactinomycin D staining demonstrated curcumin-induced early apoptosis after 3, 6, 12 and 24 h treatment and nearly no necrosis. Induction of DNA fragmentation, reduction of Bcl-2 and enhancement of cleaved caspase-3 further confirmed induction of apoptosis by curcumin. Growth of GH3 tumours in athymic nude mice was suppressed by curcumin in vivo. In endocrine pituitary tumour cell lines, GH, ACTH and prolactin production were inhibited by curcumin. Studies in 25 human pituitary adenoma cell cultures have confirmed the anti-tumorigenic and hormone-suppressive effects of curcumin. Altogether, the results described in this report suggest this natural compound as a good candidate for therapeutic use on pituitary tumours.

Free access

B Shan, J Gerez, M Haedo, M Fuertes, M Theodoropoulou, M Buchfelder, M Losa, G K Stalla, E Arzt, and U Renner

The recently cloned small RWD-domain containing protein RSUME was shown to increase protein levels of hypoxia-inducible factor-1α (HIF-1α). The latter is the oxygen-regulated subunit of HIF-1, the most important transcription factor of the cellular adaptive processes to hypoxic conditions. It is also a major regulator of vascular endothelial growth factor-A (VEGF-A), which is critically involved in the complex process of tumour neovascularisation. In this study, the expression and role of RSUME in pituitary tumours was studied. We found that RSUME mRNA was up-regulated in pituitary adenomas and significantly correlated with HIF-1α mRNA levels. Hypoxia (1% O2) or treatment with hypoxia-mimicking CoCl2 enhanced RSUME and HIF-1α expression, induced translocation of HIF-1α to the nuclei and stimulated VEGF-A production both in pituitary tumour cell lines and primary human pituitary adenoma cell cultures. When RSUME expression was specifically down-regulated by siRNA, the CoCl2-induced increase VEGF-A secretion was strongly reduced which was shown to be a consequence of the RSUME knockdown-associated reduction of HIF-1α synthesis. Thus, RSUME plays an important role in initiating pituitary tumour neovascularisation through regulating HIF-1α levels and subsequent VEGF-A production and may therefore be critically involved in pituitary adenoma progression.

Free access

Yong Lin, Xiaofei Jiang, Ye Shen, Min Li, Huili Ma, Mingzhao Xing, and Yuan Lu

Genetic alterations in the PIK3CA gene of the phosphoinositide 3-kinase (PI3K)/AKT pathway have been found in many human tumors, but they have not been explored in pituitary tumors. We undertook the present study to explore mutations and amplifications of the PIK3CA gene in pituitary tumors. DNA sequencing and real-time quantitative PCR were used to examine mutations and amplifications respectively, on genomic DNA samples isolated from 353 cases of pituitary tumors, and immunohistostaining was used to assess PIK3CA expression. About 8 out of 91 (9%) invasive pituitary tumors versus 0 out of 262 (0%) noninvasive tumors were found to harbor somatic mutations in exons 9 and 20 of the PIK3CA gene (P<0.001), and the mutation was associated with increased disease recurrence. Genomic PIK3CA amplifications (defined as ≥4 copies) were observed in both invasive and noninvasive tumors, with a prevalence of around 20–40% in various types of pituitary tumors. PIK3CA protein overexpression was observed in cases with high PIK3CA copy number. RAS mutations were also examined and found in 6 out of the 91 (7%) invasive tumors. PIK3CA amplifications were mutually exclusive with PIK3CA or RAS mutations (P<0.001). This study demonstrated for the first time relatively common PIK3CA mutations and amplifications as well as RAS mutations and their tendency of mutual exclusivity in pituitary tumors. The data provide strong genetic evidence supporting a role of the PI3K/AKT signaling pathway in the tumorigenesis of pituitary tumors, particularly the invasive types.