Search Results

You are looking at 71 - 80 of 91 items for

  • Abstract: Hyperparathyroidism x
  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Alexander J Cole, Roderick Clifton-Bligh, and Deborah J Marsh

Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20–RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy.

Free access

Ta-Chun Yuan, Suresh Veeramani, Fen-Fen Lin, Dmitry Kondrikou, Stanislav Zelivianski, Tsukasa Igawa, Dev Karan, Surinder K. Batra, and Ming-Fong Lin

Neuroendocrine (NE) cells are the minor cell populations in normal prostate epithelial compartments. During prostate carcinogenesis, the number of NE cells in malignant lesions increases, correlating with its tumorigenicity and hormone-refractory growth. It is thus proposed that cancerous NE cells promote prostate cancer (PCa) cell progression and its androgen-independent proliferation, although the origin of the cancerous NE cells is not clear. To investigate the role of cancerous NE cells in prostate carcinogenesis, we characterized three NE subclone cell lines–NE-1.3, NE-1.8 and NE-1.9, which were transdifferentiated from androgen-sensitive human PCa LNCaP cells by culturing in an androgen-depleted environment, resembling clinical androgen-ablation therapy. These subclone cells acquire many features of NE cells seen in clinical prostate carcinomas, for example exhibiting a neuronal morphology and expressing multiple NE markers, including neuron-specific enolase, chromogranin B, neurotensin, parathyroid hormone-related peptide, and to a lesser degree for chromogranin A, while lacking androgen receptor (AR) or prostate specific antigen (PSA) expression. These cells represent terminally differentiated stable cells because after 3 months of re-culturing in a medium containing androgenic activity, they still retained the NE phenotype and expressed NE markers. Despite these NE cells having a slow growth rate, they readily developed xenograft tumors. Furthermore, media conditioned by these NE cells exhibited a stimulatory effect on proliferation and PSA secretion by LNCaP cells in androgen-deprived conditions. Additionally, we found that receptor protein tyrosine phosphatase α plays a role in upregulating multiple NE markers and acquiring the NE phenotype. These NE cells thus represent cancerous NE cells and could serve as a useful cell model system for investigating the role of cancerous NE cells in hormone-refractory proliferation of PCa cells.

Free access

Simona Grozinsky-Glasberg, Kate E Lines, Shani Avniel-Polak, Chas Bountra, and Rajesh V Thakker

Neuroendocrine neoplasms (NENs) occur usually as sporadic tumours; however, rarely, they may arise in the context of a hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder characterised by the combined development of pancreatic NENs (pNENs) together with parathyroid and anterior pituitary tumours. The therapeutic decision for sporadic pNENs patients is multi-disciplinary and complex: based on the grade and stage of the tumor, various options (and their combinations) are considered, such as surgical excision (either curative or for debulking aims), biological drugs (somatostatin analogues), targeted therapies (mTOR inhibitors or tyrosine kinases (TK)/receptors inhibitors), peptide receptor radioligand therapy (PRRT), chemotherapy, and liver-directed therapies. However, treatment of MEN1-related NENs’ patients is even more challenging, as these tumours are usually multifocal with co-existing foci of heterogeneous biology and malignant potential, rendering them more resistant to the conventional therapies used in their sporadic counterparts, and therefore associated with a poorer prognosis. Moreover, clinical data using standard therapeutic options in MEN1-related NENs are scarce. Recent preclinical studies have identified potentially new targeted therapeutic options for treating MEN1-associated NENs, such as epigenetic modulators, Wnt pathway-targeting β-catenin antagonists, Ras signalling modulators, Akt/mTOR signalling modulators, novel somatostatin receptors analogues, anti-angiogenic drugs, as well as MEN1 gene replacement therapy. The present review aims to summarize these novel therapeutic opportunities for NENs developing in the context of MEN1 syndrome, with an emphasis on pancreatic NENs, as they are the most frequent ones studied in MEN1-NENs models to date; moreover, due to the recent shifting nomenclature of ‘pituitary adenomas’ to ‘pituitary neuroendocrine neoplasms’, relevant data on MEN1-pituitary tumours, when appropriate, are briefly described.

Free access

Michael Solarski, Fabio Rotondo, William D Foulkes, John R Priest, Luis V Syro, Henriett Butz, Michael D Cusimano, and Kalman Kovacs

In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.

Free access

A Perren, S Schmid, T Locher, P Saremaslani, C Bonvin, P U Heitz, and P Komminoth

The tumorigenesis of sporadic endocrine tumors is still not fully understood. Activating point mutations of the serine/threonine kinase gene BRAF located on 7q34 are found in a wide range of malignancies, with the highest frequency (66%) occurring in malignant melanomas. Melanomas are tumors of neural-crest-derived cells as are medullary thyroid carcinomas, pheochromocytomas and paragangliomas. BRAF has not been examined in endocrine tumors of the diffuse neuroendocrine system or of neural-crest-derived cells.

We examined 130 endocrine tumors of the pancreas, parathyroid gland, adrenal medulla, paraganglia, lung and gastrointestinal tract as well as follicular and c-cell-derived thyroid tumors. We found a high rate of V559E mutations in papillary thyroid carcinomas (47%), one V599E mutation in a well-differentiated gastric endocrine carcinoma (malignant carcinoid), but no activating BRAF mutations in all other endocrine tumors examined. These results point towards different pathways in tumorigenesis of endocrine tumors of various localizations and only rare involvement of the MAP kinase (MAPK) pathway in a subset of malignant neuroendocrine tumors.

Free access

Kerong Shi, Vaishali I Parekh, Swarnava Roy, Shruti S Desai, and Sunita K Agarwal

The multiple endocrine neoplasia type 1 (MEN1) syndrome is caused by germline mutations in the MEN1 gene encoding menin, with tissue-specific tumors of the parathyroids, anterior pituitary, and enteropancreatic endocrine tissues. Also, 30–40% of sporadic pancreatic endocrine tumors show somatic MEN1 gene inactivation. Although menin is expressed in all cell types of the pancreas, mouse models with loss of menin in either pancreatic α-cells, or β-cells, or total pancreas develop β-cell-specific endocrine tumors (insulinomas). Loss of widely expressed tumor suppressor genes may produce tissue-specific tumors by reactivating one or more embryonic-specific differentiation factors. Therefore, we determined the effect of menin overexpression or knockdown on the expression of β-cell differentiation factors in a mouse β-cell line (MIN6). We show that the β-cell differentiation factor Hlxb9 is posttranscriptionally upregulated upon menin knockdown, and it interacts with menin. Hlxb9 reduces cell proliferation and causes apoptosis in the presence of menin, and it regulates genes that modulate insulin level. Thus, upon menin loss or from other causes, dysregulation of Hlxb9 predicts a possible combined mechanism for β-cell proliferation and insulin production in insulinomas. These observations help to understand how a ubiquitously expressed protein such as menin might control tissue-specific tumorigenesis. Also, our findings identify Hlxb9 as an important factor for β-cell proliferation and insulin regulation.

Free access

Nancy D Perrier, Andrew Arnold, Jessica Costa-Guda, Naifa L Busaidy, Ha Nguyen, Hubert H Chuang, and Maria Luisa Brandi

This report summarizes published data on parathyroid cancer, with the inclusion of topics discussed at MEN2019: 16th International Workshop on Multiple Endocrine Neoplasia, 27–29 March 2019, Houston, TX, USA. An expert panel on parathyroid cancer was constituted by the Steering Committee to address key questions in the field. The objectives were to recap open forum discussion of interested parties from multiple disciplines. The expert panel met in a closed session to consult on the data to be highlighted on the evidence-based results and on the future directions. Preceding the Conference, members of the expert panel conducted an extensive literature search. All presentations were based upon the best peer-reviewed information taking into account the historical and current literature. Questions were developed by the expert panel on parathyroid carcinoma. A comprehensive literature search for relevant studies was undertaken. This report represents the expert panel’s synthesis of the conference material placed in a context designed to be relevant to clinicians and those engaged in cutting-edge studies of parathyroid carcinoma. This document not only provides a summary of our current knowledge but also places recent advances in its management into a context that should enhance future advances in our understanding of parathyroid carcinoma.

Free access

Joanna Grey and Kym Winter

Multiple endocrine neoplasia type 2 (MEN2) refers to the autosomal-dominant neuroendocrine tumour syndromes, MEN type 2A (MEN2A) and MEN type 2B (MEN2B). They are typified by the development of medullary thyroid cancer (MTC), phaeochromocytoma and parathyroid hyperplasia in MEN2A and MTC, phaeochromocytomas, ganglioneuromatosis and skeletal abnormalities in MEN2B. The aggressiveness of MTC is variable according to genotype, and although it is still the major cause of mortality in both conditions, prognosis has improved dramatically in those diagnosed and treated at a young age thanks to predictive genetic testing. Nevertheless, metastatic MTC, ganglioneuromatosis and a variety of other negative clinical and psychosocial impacts on quality of life and/or prognosis in MEN2 persist. In the absence, at the time of writing, of any large-scale research into quality of life specifically in MEN2, this review includes data from patient surveys and anonymised patient anecdotes from the records of the Association for Multiple Endocrine Neoplasia Disorders (AMEND), for whom the authors work. We recommend that these patients are cared for only in centres of expertise able to provide expert diagnosis, treatment and continuity of care, including psychological and transition support. Only in this way can the clinical advances of the last two and half decades be built upon further to ensure that the care of these complex, lifelong patients can be considered truly holistic.

Free access

Anna Angelousi, Georgios K Dimitriadis, Georgios Zografos, Svenja Nölting, Gregory Kaltsas, and Ashley Grossman

Tumourigenesis is a relatively common event in endocrine tissues. Currently, specific guidelines have been developed for common malignant endocrine tumours, which also incorporate advances in molecular targeted therapies (MTT), as in thyroid cancer and in gastrointestinal neuroendocrine malignancies. However, there is little information regarding the role and efficacy of MTT in the relatively rare malignant endocrine tumours mainly involving the adrenal medulla, adrenal cortex, pituitary, and parathyroid glands. Due to the rarity of these tumours and the lack of prospective studies, current guidelines are mostly based on retrospective data derived from surgical, locoregional and ablative therapies, and studies with systemic chemotherapy. In addition, in many of these malignancies the prognosis remains poor with individual patients responding differently to currently available treatments, necessitating the development of new personalised therapeutic strategies. Recently, major advances in the molecular understanding of endocrine tumours based on genomic, epigenomic, and transcriptome analysis have emerged, resulting in new insights into their pathogenesis and molecular pathology. This in turn has led to the use of novel MTTs in increasing numbers of patients. In this review, we aim to present currently existing and evolving data using MTT in the treatment of adrenal, pituitary and malignant parathyroid tumours, and explore the current utility and effectiveness of such therapies and their future evolution.

Free access

A C-M Chang, D A Jellinek, and R R Reddel

Stanniocalcin (STC) is a glycoprotein hormone that is secreted by the corpuscle of Stannius, an endocrine gland of bony fish, and is involved in calcium and phosphate homeostasis. The related mammalian proteins, STC1 and STC2, are expressed in a wide variety of tissues. The ovaries have the highest level of STC1, and this increases during pregnancy and lactation. STC1 is present in breast ductal epithelium, and its expression is induced by BRCA1, a tumor suppressor gene that has an important role in breast and ovarian cancer. The expression of STC2 is induced by estrogen, and there is a positive correlation between the level of expression of estrogen receptor and expression of both STC1 and STC2 in breast cancer. This article reviews the data currently available regarding the mammalian STCs, and discusses the roles they may play in normal physiology and in breast and other cancers.