Search Results

You are looking at 71 - 80 of 478 items for

  • Abstract: MEN* x
  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • All content x
Clear All Modify Search
Free access

Viktoria Evdokimova, Manoj Gandhi, Jayanagendra Rayapureddi, James R Stringer, and Yuri E Nikiforov

Ionizing radiation (IR) exposure increases the risk of thyroid cancer and other cancer types. Chromosomal rearrangements, such as RET/PTC, are characteristic features of radiation-associated thyroid cancer and can be induced by radiation in vitro. IR causes double-strand breaks (DSBs), suggesting that such damage leads to RET/PTC, but the rearrangement mechanism has not been established. To study the mechanism, we explored the possibility of inducing RET/PTC by electroporation of restriction endonucleases (REs) into HTori-3 human thyroid cells. We used five REs, which induced DSB in a dose-dependent manner similar to that seen with IR. Although all but one RE caused DSB in one or more of the three genes involved in RET/PTC, rearrangement was detected only in cells electroporated with either PvuII (25 and 100 U) or StuI (100 and 250 U). The predominant rearrangement type was RET/PTC3, which is characteristic of human thyroid cancer arising early after Chernobyl-related radioactive iodine exposure. Both enzymes that produced RET/PTC had restriction sites only in one of the two fusion partner genes. Moreover, the two enzymes that produced RET/PTC had restriction sites present in clusters, which was not the case for RE that failed to induce RET/PTC. In summary, we establish a model of DSB induction by RE and report for the first time the formation of carcinogenic chromosomal rearrangements, predominantly RET/PTC3, as a result of DSB produced by RE. Our data also raise a possibility that RET/PTC rearrangement can be initiated by a complex DSB that is induced in one of the fusion partner genes.

Open access

Tobias Hofving, Yvonne Arvidsson, Bilal Almobarak, Linda Inge, Roswitha Pfragner, Marta Persson, Göran Stenman, Erik Kristiansson, Viktor Johanson, and Ola Nilsson

Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors.

Free access

G Rindi, C Klersy, F Inzani, G Fellegara, L Ampollini, A Ardizzoni, N Campanini, P Carbognani, T M De Pas, D Galetta, P L Granone, L Righi, M Rusca, L Spaggiari, M Tiseo, G Viale, M Volante, M Papotti, and G Pelosi

Lung neuroendocrine tumors are catalogued in four categories by the World Health Organization (WHO 2004) classification. Its reproducibility and prognostic efficacy was disputed. The WHO 2010 classification of digestive neuroendocrine neoplasms is based on Ki67 proliferation assessment and proved prognostically effective. This study aims at comparing these two classifications and at defining a prognostic grading system for lung neuroendocrine tumors. The study included 399 patients who underwent surgery and with at least 1 year follow-up between 1989 and 2011. Data on 21 variables were collected, and performance of grading systems and their components was compared by Cox regression and multivariable analyses. All statistical tests were two-sided. At Cox analysis, WHO 2004 stratified patients into three major groups with statistically significant survival difference (typical carcinoid vs atypical carcinoid (AC), P=0.021; AC vs large-cell/small-cell lung neuroendocrine carcinomas, P<0.001). Optimal discrimination in three groups was observed by Ki67% (Ki67% cutoffs: G1 <4, G2 4–<25, G3 ≥25; G1 vs G2, P=0.021; and G2 vs G3, P≤0.001), mitotic count (G1 ≤2, G2 >2–47, G3 >47; G1 vs G2, P≤0.001; and G2 vs G3, P≤0.001), and presence of necrosis (G1 absent, G2 <10% of sample, G3 >10% of sample; G1 vs G2, P≤0.001; and G2 vs G3, P≤0.001) at uni and multivariable analyses. The combination of these three variables resulted in a simple and effective grading system. A three-tiers grading system based on Ki67 index, mitotic count, and necrosis with cutoffs specifically generated for lung neuroendocrine tumors is prognostically effective and accurate.

Open access

Rodrigo A Toledo, Roxanne Hatakana, Delmar M Lourenço Jr, Susan C Lindsey, Cleber P Camacho, Marcio Almeida, José V Lima Jr, Tomoko Sekiya, Elena Garralda, Michel S Naslavsky, Guilherme L Yamamoto, Monize Lazar, Osorio Meirelles, Tiago J P Sobreira, Maria Lucia Lebrao, Yeda A O Duarte, John Blangero, Mayana Zatz, Janete M Cerutti, Rui M B Maciel, and Sergio P A Toledo

Accurate interpretation of germline mutations of the rearranged during transfection (RET) proto-oncogene is vital for the proper recommendation of preventive thyroidectomy in medullary thyroid carcinoma (MTC)-prone carriers. To gain information regarding the most disputed variant of RET, ATA-A Y791F, we sequenced blood DNA samples from a cohort of 2904 cancer-free elderly individuals (1261 via Sanger sequencing and 1643 via whole-exome/genome sequencing). We also accessed the exome sequences of an additional 8069 individuals from non-cancer-related laboratories and public databanks as well as genetic results from the Catalogue of Somatic Mutations in Cancer (COSMIC) project. The mean allelic frequency observed in the controls was 0.0031, with higher occurrences in Central European populations (0.006/0.008). The prevalence of RET Y791F in the control databases was extremely high compared with the 40 known RET pathogenic mutations (P=0.00003), while no somatic occurrence has been reported in tumours. In this study, we report new, unrelated Brazilian individuals with germline RET Y791F-only: two tumour-free elderly controls; two individuals with sporadic MTC whose Y791F-carrying relatives did not show any evidence of tumours; and a 74-year-old phaeochromocytoma patient without MTC. Furthermore, we showed that the co-occurrence of Y791F with the strong RET C634Y mutation explains the aggressive MTC phenotypes observed in a large affected family that was initially reported as Y791F-only. Our literature review revealed that limited analyses have led to the misclassification of RET Y791F as a probable pathogenic variant and, consequently, to the occurrence of unnecessary thyroidectomies. The current study will have a substantial clinical influence, as it reveals, in a comprehensive manner, that RET Y791F only shows no association with MTC susceptibility.

Free access

Margarida M Moura, Branca M Cavaco, and Valeriano Leite

Medullary thyroid carcinoma (MTC) is a rare malignancy originating from the calcitonin-secreting parafollicular thyroid C cells. Approximately 75% of cases are sporadic. Rearranged during transfection (RET) proto-oncogene plays a crucial role in MTC development. Besides RET, other oncogenes commonly involved in the pathogenesis of human cancers have also been investigated in MTC. The family of human RAS genes includes the highly homologous HRAS, KRAS, and NRAS genes that encode three distinct proteins. Activating mutations in specific hotspots of the RAS genes are found in about 30% of all human cancers. In thyroid neoplasias, RAS gene point mutations, mainly in NRAS, are detected in benign and malignant tumors arising from the follicular epithelium. However, recent reports have also described RAS mutations in MTC, namely in HRAS and KRAS. Overall, the prevalence of RAS mutations in sporadic MTC varies between 0–43.3%, occurring usually in tumors with WT RET and rarely in those harboring a RET mutation, suggesting that activation of these proto-oncogenes represents alternative genetic events in sporadic MTC tumorigenesis. Thus, the assessment of RAS mutation status can be useful to define therapeutic strategies in RET WT MTC. MTC patients with RAS mutations have an intermediate risk for aggressive cancer, between those with RET mutations in exons 15 and 16, which are associated with the worst prognosis, and cases with other RET mutations, which have the most indolent course of the disease. Recent results from exome sequencing indicate that, besides mutations in RET, HRAS, and KRAS, no other recurrent driver mutations are present in MTC.

Restricted access

U Meyer-Pannwitt, K Kummerfeldt, G Froeschle, V A Dorss, and R Klapdor

INTRODUCTION Abdominal neuroendocrine tumors are mainly endocrine pancreatic and gastrointestinal carcinoid tumors. Patients with these relatively rare malignancies often have long and unusual clinical courses that challenge surgeons, internists and pathologists (Moertel 1989). Neuron-specific enolase (NSE) is a glycolytic enzyme found in the cytoplasm of both nerve cells and neuroendocrine cells of various organs. Tumors derived from these cells produce large amounts of NSE that can be measured in serum by RIA (Tapia et al. 1981). In small-cell lung cancer, NSE was found to have a stage-dependent sensitivity of about 4080% (Carney et al. 1982). Most investigators have judged serum NSE measurements to be a useful tool for monitoring therapy and predicting survival in small-cell lung cancer (Fischbach et al. 1986, Noeu et al. 1990). Jorgensen et al. (1994) found that serum NSE is a good means for determining response and progression of the disease. Some authors prefer the combination
Free access

Simona Grozinsky-Glasberg, Ilan Shimon, Márta Korbonits, and Ashley B Grossman

Neuroendocrine tumours (NETs) represent a heterogeneous family of neoplasms, which may develop from different endocrine glands (such as the pituitary, the parathyroid or the neuroendocrine adrenal glands), endocrine islets (within the thyroid or pancreas) as well as from endocrine cells dispersed between exocrine cells throughout the digestive and respiratory tracts. The development of somatostatin analogues (SSA) as important diagnostic and treatment tools has revolutionised the clinical management of patients with NETs. However, although symptomatic relief and stabilisation of tumour growth for various periods of time are observed in many patients treated with SSA, tumour regression is rare. Possible mechanisms when this does occur include antagonism of local growth factor release and effects, probably including activation of tyrosine and serine–threonine phosphatases, and indirect effects via anti-angiogenesis. The development of new SSA, new drug combination therapies and chimaeric molecules should further improve the clinical management of these patients, as should a more complete understanding of their mode of action.

Free access

S L Asa, O Casar-Borota, P Chanson, E Delgrange, P Earls, S Ezzat, A Grossman, H Ikeda, N Inoshita, N Karavitaki, M Korbonits, E R Laws Jr, M B Lopes, N Maartens, I E McCutcheon, O Mete, H Nishioka, G Raverot, F Roncaroli, W Saeger, L V Syro, A Vasiljevic, C Villa, A Wierinckx, J Trouillas, and and the attendees of 14th Meeting of the International Pituitary Pathology Club, Annecy, France, November 2016

The classification of neoplasms of adenohypophysial cells is misleading because of the simplistic distinction between adenoma and carcinoma, based solely on metastatic spread and the poor reproducibility and predictive value of the definition of atypical adenomas based on the detection of mitoses or expression of Ki-67 or p53. In addition, the current classification of neoplasms of the anterior pituitary does not accurately reflect the clinical spectrum of behavior. Invasion and regrowth of proliferative lesions and persistence of hormone hypersecretion cause significant morbidity and mortality. We propose a new terminology, pituitary neuroendocrine tumor (PitNET), which is consistent with that used for other neuroendocrine neoplasms and which recognizes the highly variable impact of these tumors on patients.

Free access

Germano Gaudenzi, Silvia Carra, Alessandra Dicitore, Maria Celeste Cantone, Luca Persani, and Giovanni Vitale

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms that originate from the neuroendocrine system. In several cases, these neoplasms can release bioactive hormones leading to characteristic clinical syndromes and hormonal dysregulations with detrimental impact on the quality of life and survival of these patients. Only few animal models are currently available to investigate pathogenesis, progression and functional syndromes in NETs and to identify new therapeutic strategies. The tropical teleost zebrafish (Danio rerio) is a popular vertebrate model system that offers unique advantages for the study of several biological processes, ranging from embryonic development to human diseases such as cancer. In this review, we summarize recent advances on zebrafish models for NET preclinical research that take advantage of modern genetic and transplantable technologies. In the future, these tools may have a role in the treatment decision-making and tertiary prevention of NETs.

Free access

Maria Rosaria Rusciano, Marcella Salzano, Sara Monaco, Maria Rosaria Sapio, Maddalena Illario, Valentina De Falco, Massimo Santoro, Pietro Campiglia, Lucio Pastore, Gianfranco Fenzi, Guido Rossi, and Mario Vitale

RET/papillary thyroid carcinoma (PTC), TRK-T, or activating mutations of Ras and BRaf are frequent genetic alterations in PTC, all leading to the activation of the extracellular-regulated kinase (Erk) cascade. The aim of this study was to investigate the role of calmodulin-dependent kinase II (CaMKII) in the signal transduction leading to Erk activation in PTC cells. In normal thyroid cells, CaMKII and Erk were in the inactive form in the absence of stimulation. In primary PTC cultures and in PTC cell lines harboring the oncogenes RET/PTC-1 or BRafV600E, CaMKII was active also in the absence of any stimulation. Inhibition of calmodulin or phospholipase C (PLC) attenuated the level of CaMKII activation. Expression of recombinant RET/PTC-3, BRafV600E, or RasV12 induced CaMKII activation. Inhibition of CaMKII attenuated Erk activation and DNA synthesis in thyroid papillary carcinoma (TPC-1), a cell line harboring RET/PTC-1, suggesting that CaMKII is a component of the Erk signal cascade in this cell line. In conclusion, PTCs contain an active PLC/Ca2+/calmodulin-dependent signal inducing constitutive activation of CaMKII. This kinase is activated by BRafV600E, oncogenic Ras, and by RET/PTC. CaMKII participates to the activation of the Erk pathway by oncogenic Ras and RET/PTC and contributes to their signal output, thus modulating tumor cell proliferation.