Search Results

You are looking at 81 - 90 of 480 items for

  • Abstract: MEN* x
  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • All content x
Clear All Modify Search
Free access

Simona Grozinsky-Glasberg, Ilan Shimon, Márta Korbonits, and Ashley B Grossman

Neuroendocrine tumours (NETs) represent a heterogeneous family of neoplasms, which may develop from different endocrine glands (such as the pituitary, the parathyroid or the neuroendocrine adrenal glands), endocrine islets (within the thyroid or pancreas) as well as from endocrine cells dispersed between exocrine cells throughout the digestive and respiratory tracts. The development of somatostatin analogues (SSA) as important diagnostic and treatment tools has revolutionised the clinical management of patients with NETs. However, although symptomatic relief and stabilisation of tumour growth for various periods of time are observed in many patients treated with SSA, tumour regression is rare. Possible mechanisms when this does occur include antagonism of local growth factor release and effects, probably including activation of tyrosine and serine–threonine phosphatases, and indirect effects via anti-angiogenesis. The development of new SSA, new drug combination therapies and chimaeric molecules should further improve the clinical management of these patients, as should a more complete understanding of their mode of action.

Free access

Germano Gaudenzi, Silvia Carra, Alessandra Dicitore, Maria Celeste Cantone, Luca Persani, and Giovanni Vitale

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms that originate from the neuroendocrine system. In several cases, these neoplasms can release bioactive hormones leading to characteristic clinical syndromes and hormonal dysregulations with detrimental impact on the quality of life and survival of these patients. Only few animal models are currently available to investigate pathogenesis, progression and functional syndromes in NETs and to identify new therapeutic strategies. The tropical teleost zebrafish (Danio rerio) is a popular vertebrate model system that offers unique advantages for the study of several biological processes, ranging from embryonic development to human diseases such as cancer. In this review, we summarize recent advances on zebrafish models for NET preclinical research that take advantage of modern genetic and transplantable technologies. In the future, these tools may have a role in the treatment decision-making and tertiary prevention of NETs.

Free access

S L Asa, O Casar-Borota, P Chanson, E Delgrange, P Earls, S Ezzat, A Grossman, H Ikeda, N Inoshita, N Karavitaki, M Korbonits, E R Laws Jr, M B Lopes, N Maartens, I E McCutcheon, O Mete, H Nishioka, G Raverot, F Roncaroli, W Saeger, L V Syro, A Vasiljevic, C Villa, A Wierinckx, J Trouillas, and and the attendees of 14th Meeting of the International Pituitary Pathology Club, Annecy, France, November 2016

The classification of neoplasms of adenohypophysial cells is misleading because of the simplistic distinction between adenoma and carcinoma, based solely on metastatic spread and the poor reproducibility and predictive value of the definition of atypical adenomas based on the detection of mitoses or expression of Ki-67 or p53. In addition, the current classification of neoplasms of the anterior pituitary does not accurately reflect the clinical spectrum of behavior. Invasion and regrowth of proliferative lesions and persistence of hormone hypersecretion cause significant morbidity and mortality. We propose a new terminology, pituitary neuroendocrine tumor (PitNET), which is consistent with that used for other neuroendocrine neoplasms and which recognizes the highly variable impact of these tumors on patients.

Free access

Luis V Syro, Fabio Rotondo, Leon D Ortiz, and Kalman Kovacs

Temozolomide is an alkylating chemotherapeutic agent used in malignant neuroendocrine neoplasia, melanoma, brain metastases and an essential component of adjuvant therapy in the treatment of glioblastoma multiforme and anaplastic astrocytoma. Since 2006, it has been used for the treatment of pituitary carcinomas and aggressive pituitary adenomas. Here, we discuss the current indications and results of temozolomide therapy in pituitary tumors, as well as frequently asked questions regarding temozolomide treatment, duration of therapy, dosage, tumor recurrence and resistance.

Open access

Nimrod B Kiss, Andreas Muth, Adam Andreasson, C Christofer Juhlin, Janos Geli, Martin Bäckdahl, Anders Höög, Bo Wängberg, Ola Nilsson, Håkan Ahlman, and Catharina Larsson

Recurrent alterations in promoter methylation of tumor suppressor genes (TSGs) and LINE1 (L1RE1) repeat elements were previously reported in pheochromocytoma and abdominal paraganglioma. This study was undertaken to explore CpG methylation abnormalities in an extended tumor panel and assess possible relationships between metastatic disease and mutation status. CpG methylation was quantified by bisulfite pyrosequencing for selected TSG promoters and LINE1 repeats. Methylation indices above normal reference were observed for DCR2 (TNFRSF10D), CDH1, P16 (CDKN2A), RARB, and RASSF1A. Z-scores for overall TSG, and individual TSG methylation levels, but not LINE1, were significantly correlated with metastatic disease, paraganglioma, disease predisposition, or outcome. Most strikingly, P16 hypermethylation was strongly associated with SDHB mutation as opposed to RET/MEN2, VHL/VHL, or NF1-related disease. Parallel analyses of constitutional, tumor, and metastasis DNA implicate an order of events where constitutional SDHB mutations are followed by TSG hypermethylation and 1p loss in primary tumors, later transferred to metastatic tissue. In the combined material, P16 hypermethylation was prevalent in SDHB-mutated samples and was associated with short disease-related survival. The findings verify the previously reported importance of P16 and other TSG hypermethylation in an independent tumor series. Furthermore, a constitutional SDHB mutation is proposed to predispose for an epigenetic tumor phenotype occurring before the emanation of clinically recognized malignancy.

Free access

A Falchetti and M L Brandi

Multiple Endocrine Neoplasias type 1 (MEN 1) and type 2 (MEN 2) represent complex inherited (autosomal dominant traits) syndromes characterized by occurrence of distinct proliferative disorders of endocrine tissues, varying from hyperplasia to adenoma and carcinoma.

MEN 1 syndrome is characterized by parathyroid gland, anterior pituitary and endocrine pancreas tumors. Other endocrine and non endocrine tumors, such as carcinoids, lipomas, pinealomas, adrenocortical and thyroid follicular tumors, have been also described in MEN 1 patients occurring at higher frequency than in general population (Brandi ML et al. 1987). Recently also a spinal ependymoma has been found in a patient with MEN 1 syndrome (Kato H et al 1997)

MEN 2 syndromes recognize three main clinical entities, MEN 2A, characterized by medullary thyroid carcinoma (MTC), primary hyperparathyroidism (PHPT) and pheochromocytoma (PHEO); MEN 2B that exhibits MTC, usually developing sooner than the MEN 2A- associated one, pheochromocytoma, multiple neuromas of gastroenteric mucosa, myelinated corneal nerves (Gorlin RJ et al. 1968) and a typical marphanoid habitus; and familial medullary thyroid carcinoma only (FMTC) featuring by families with at least four members with MTC and no objective evidence of pheochromocytoma and parathyroid disease on screening of affected and at-risk members, as stated by the International RET Mutation Consortium (Larsson C et al. 1994).

Acknowledgements

This work was supported by grants of the Associazione Italiana per la Ricerca sul Cancro (to MLB), from CNR/PF ACRO (INV. 95.00316 PF 39) and by MURST 60% (to MLB).

Free access

Michael Derwahl and Diana Nicula

Proliferative thyroid diseases are more prevalent in females than in males. Upon the onset of puberty, the incidence of thyroid cancer increases in females only and declines again after menopause. Estrogen is a potent growth factor both for benign and malignant thyroid cells that may explain the sex difference in the prevalence of thyroid nodules and thyroid cancer. It exerts its growth-promoting effect through a classical genomic and a non-genomic pathway, mediated via a membrane-bound estrogen receptor. This receptor is linked to the tyrosine kinase signaling pathways MAPK and PI3K. In papillary thyroid carcinomas, these pathways may be activated either by a chromosomal rearrangement of the tyrosine receptor kinase TRKA, by RET/PTC genes, or by a BRAF mutation and, in addition, in females they may be stimulated by high levels of estrogen. Furthermore, estrogen is involved in the regulation of angiogenesis and metastasis that are critical for the outcome of thyroid cancer. In contrast to other carcinomas, however, detailed knowledge on this regulation is still missing for thyroid cancer.

Free access

Carole Guerin, Pauline Romanet, David Taieb, Thierry Brue, André Lacroix, Frederic Sebag, Anne Barlier, and Frederic Castinetti

Over the last years, the knowledge of MEN2 and non-MEN2 familial forms of pheochromocytoma (PHEO) has increased. In MEN2, PHEO is the second most frequent disease: the penetrance and age at diagnosis depend on the mutation of RET. Given the prevalence of bilateral PHEO (50% by age 50), adrenal sparing surgery, aimed at sparing a part of the adrenal cortex to avoid adrenal insufficiency, should be systematically considered in patients with bilateral PHEO. Non-MEN2 familial forms of PHEO now include more than 20 genes: however, only small phenotypic series have been reported, suggesting that phenotypic features of isolated hereditary PHEO must be better explored, and follow-up series are needed to better understand the outcome of patients carrying mutations of these genes. The first part of this review will mainly focus on these points. In the second part, a focus will be given on MEN2 and non-MEN2 familial forms of hyperparathyroidism (HPTH). Again, the management of MEN2 HPTH should be aimed at curing the disease while preserving an optimal quality of life by a tailored parathyroidectomy. The phenotypes and outcome of MEN1-, MEN4- and HRPT2-related HPTH are briefly described, with a focus on the most recent literature data and is compared with familial hypocalciuric hypercalcemia.

Free access

Elizabeth G Grubbs, Ronald M Lechan, Beth Edeiken-Monroe, Gilbert J Cote, Chardria Trotter, Arthur S Tischler, and Robert F Gagel

Forty years ago, physicians caring for the J-kindred, a 100+ member family with multiple endocrine neoplasia type 2A (MEN2A), hypothesized that early thyroidectomy based on measurement of the biomarker calcitonin could cure patients at risk for development of medullary thyroid carcinoma (MTC). We re-evaluated 22 family members with proven RET proto-oncogene mutations (C634G) who underwent thyroidectomy and central lymphadenectomy between 1972 and 1994 based on stimulated calcitonin abnormalities. Current disease status was evaluated by serum calcitonin measurement and neck ultrasound in 18 of the 22 prospectively screened patients. The median age of the cohort at thyroidectomy was 16.5 years (range 9–24). The median duration of follow-up at the time of examination was 40 years (range 21–43) with a median current age of 52 years (range 34–65). Fifteen of the 18 patients had no detectable serum calcitonin (<2 pg/mL). Three had detectable serum calcitonin measurements, inappropriately elevated following total thyroidectomy. None of the 16 patients imaged had an abnormal ultrasound. Survival analysis shows no MTC-related deaths in the prospectively screened patients, whereas there were many in prior generations. Early thyroidectomy based on biomarker testing has rendered 15 of 18 MEN2A patients (83%) calcitonin-free with a median follow-up period of 40 years. There have been no deaths in the prospectively screened and thyroidectomized group. We conclude that early thyroidectomy and central lymph node dissection is an effective prophylactic treatment for hereditary MTC.

Free access

Tim J Takkenkamp, Mathilde Jalving, Frederik J H Hoogwater, and Annemiek M E Walenkamp

Immunotherapy in the form of immune checkpoint inhibitors (ICIs) has transformed the treatment landscape in numerous types of advanced cancer. However, the majority of patients do not benefit from this treatment modality. Although data are scarce, in general, patients with low-grade neuroendocrine tumours (NETs) do not benefit from treatment with ICIs in contrast to patients with neuroendocrine carcinoma, in which a small subgroup of patients may benefit. Low- and intermediate-grade NETs predominantly lack factors associated with response to ICIs treatment, like immune cell infiltration, and have an immunosuppressive tumour metabolism and microenvironment. In addition, because of its potential influence on the response to ICIs, major interest has been shown in the tryptophan-degrading enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). These enzymes work along the kynurenine pathway that deplete tryptophan in the tumour microenvironment. IDO and TDO are especially of interest in NETs since some tumours produce serotonin but the majority do not, which potentially deplete the precursor tryptophan. In this review, we summarize the current knowledge on the immune tumour microenvironment of neuroendocrine tumours and implications for treatment with immune checkpoint inhibitors. We also discuss (targetable) factors in the NET tumour microenvironment that potentially modulate the anti-cancer immune response.