Search Results

You are looking at 81 - 90 of 159 items for

  • Abstract: Pituitary x
  • Abstract: Notch x
  • Abstract: Prolactin x
  • Abstract: Hypopituitarism x
  • Abstract: acromegaly x
  • All content x
Clear All Modify Search
Free access

Eric Monsalves, Kyle Juraschka, Toru Tateno, Sameer Agnihotri, Sylvia L Asa, Shereen Ezzat, and Gelareh Zadeh

Pituitary adenomas are common intracranial neoplasms. Patients with these tumors exhibit a wide range of clinically challenging problems, stemming either from results of sellar mass effect in pituitary macroadenoma or the diverse effects of aberrant hormone production by adenoma cells. While some patients are cured/controlled by surgical resection and/or medical therapy, a proportion of patients exhibit tumors that are refractory to current modalities. New therapeutic approaches are needed for these patients. Activation of the AKT/phophotidylinositide-3-kinase pathway, including mTOR activation, is common in human neoplasia, and a number of therapeutic approaches are being employed to neutralize activation of this pathway in human cancer. This review examines the role of this pathway in pituitary tumors with respect to tumor biology and its potential role as a therapeutic target.

Free access

Tomoko Sekiya, Marcello D Bronstein, Katiuscia Benfini, Viviane C Longuini, Raquel S Jallad, Marcio C Machado, Tatiana D Goncalves, Luciana H Osaki, Leonardo Higashi, Jose Viana-Jr, Claudio Kater, Misu Lee, Sara Molatore, Guilherme Francisco, Roger Chammas, Michel S Naslavsky, David Schlesinger, Patricia Gama, Yeda A O Duarte, Maria Lucia Lebrão, Mayana Zatz, Osorio Meirelles, Bernardo Liberman, Maria Candida B V Fragoso, Sergio P A Toledo, Natalia S Pellegata, and Rodrigo A Toledo

Abstract

Germline mutations in p27 kip1 are associated with increased susceptibility to multiple endocrine neoplasias (MEN) both in rats and humans; however, the potential role of common polymorphisms of this gene in endocrine tumor susceptibility and tumorigenesis remains mostly unrecognized. To assess the risk associated with polymorphism rs2066827 (p27-V109G), we genotyped a large cohort of Brazilian patients with sporadic endocrine tumors (pituitary adenomas, n=252; pheochromocytomas, n=125; medullary thyroid carcinoma, n=51; and parathyroid adenomas, n=19) and 885 population-matched healthy controls and determined the odds ratios and 95% CIs. Significant associations were found for the group of patients with pituitary adenomas (P=0.01), particularly for those with ACTH-secreting pituitary adenomas (P=0.005). In contrast, no association was found with GH-secreting pituitary tumors alone or with the sporadic counterpart of MEN2-component neoplasias. Our in vitro analyses revealed increased colony formation and cell growth rate for an AtT20 corticotropin mouse cell line overexpressing the p27-V109G variant compared with cells transfected with the WT p27. However, the genotypic effects in genetic and in vitro approaches were divergent. In accordance with our genetic data showing specificity for ACTH-secreting pituitary tissues, the overexpression of p27-V109G in a GH3 somatotropin rat cell line resulted in no difference compared with the WT. Pituitary tumors are one of the major clinical components of syndromes associated with the p27 pathogenic mutations MENX and MEN4. Our genetic and in vitro data indicate that the common polymorphism rs2066827 may play a role in corticotropinoma susceptibility and tumorigenesis through a molecular mechanism not fully understood thus far.

Free access

Katharina Lampichler, Patricio Ferrer, Greisa Vila, Mirjam I Lutz, Florian Wolf, Engelbert Knosp, Ludwig Wagner, Anton Luger, and Sabina Baumgartner-Parzer

The Hedgehog (Hh) pathway is an important regulator of early tissue patterning and stem cell propagation. It was found to be aberrantly activated in numerous types of human cancer and might be relevant in cancer stem cells. The identification of adult stem cells in the pituitary raised the question if tumor-initiating cells and Hh signaling are involved in pituitary adenoma formation. The present study aimed at the evaluation of Hh signaling in relation to stem cell and cell cycle markers in 30 human pituitary adenomas and in cultured murine adenoma cells. Therefore, expression levels of components of the Hh pathway, stem cell marker SOX2, cell cycle regulator tumor-protein 53 (TP53), proliferation marker Ki67 (MKI67) and superoxide dismutase 1 (SOD1) were evaluated in 30 human pituitary adenomas in comparison to control tissue. Modulation of cell function and target gene expression by the inhibition and activation of the Hh pathway were studied in murine adenoma cells. We show that transcription factor glioma-associated oncogene 1 (GLI1) is overexpressed in 87% of all pituitary adenomas. The expression of GLI1 significantly correlated with that of SOX2, TP53, MKI67 and SOD1. Inhibition of GLI1 resulted in the downregulation of the above genes and severe cell death in mouse adenoma cells. On the other hand, activation of the Hh pathway increased cell viability and target gene expression. In conclusion, our findings point toward an alternative, ligand-independent Hh pathway activation with GLI1 playing a major role in the cell survival of pituitary adenoma cells.

Free access

W E Farrell and R N Clayton

Throughout the genome CpG dinucleotides are found at one-fifth of their expected frequency and their rarity is further marked by the fact that 70% are methylated. In contrast, CpG islands (CGI), found associated with the promoters of many genes, have maintained their expected frequency of this dinucleotide, and remain unmethylated. Inappropriate methylation of CGIs is associated with histone deacetylation and gene silencing, while methylation of CpGs outside of CGIs is associated with significantly higher mutation rates. Methylation of CGIs is a frequent event in numerous tumour types including those that arise within the pituitary gland. Several studies now show highly frequent methylation of the p16 gene that is significantly associated with loss of cognate protein and that appears to be an early change in pituitary tumorigenesis. Collectively, studies show that somatotrophinomas are an infrequent target for p16 CGI methylation. However, in this pituitary tumour subtype, loss of pRb is associated with either CGI methylation or micro-deletion within the protein-pocket binding domain. As in other tumour types loss of p16 or RB1 appear to be mutually exclusive events in non-functional adenomas and somatotrophinomas respectively. Investigation of the Death Associated Protein Kinase gene shows that loss of its protein (DAPK), a pro-apoptotic molecule, in pituitary tumours is also associated with either methylation or deletion within its associated CGI. In the case of DAPK, however, these changes segregate with invasive pituitary tumours irrespective of tumour subtype. Methylation represents a positive signal that can be detected with exquisite sensitivity; in addition, this change targets multiple genes that show tumour type specificity. Taken together, the detection of DNA methylation changes, using either a panel of predefined marker-islands, or CGI arrays, provides the opportunity to generate "methylation profiles". This new knowledge will increase our understanding of tumour biology and could ultimately aid medical management in these different tumour types, including those of pituitary origin.

Free access

D Dworakowska, E Wlodek, C A Leontiou, S Igreja, M Cakir, M Teng, N Prodromou, M I Góth, S Grozinsky-Glasberg, M Gueorguiev, B Kola, M Korbonits, and A B Grossman

Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours.

Free access

J S Davies, D A Rees, L M Evans, and M F Scanlon

Abstract

We report a case of apoplexy of an undiagnosed pituitary adenoma in a patient treated with intravenous combination chemotherapy for squamous cell carcinoma of the penis. Apoplexy occurred while he was receiving a second cycle of vinblastine, cisplatin and methotrexate and he presented with classic neuro-ophthalmological signs. He made a full recovery following conservative management with steroids alone.

Free access

Giampaolo Trivellin, Ricardo R Correa, Maria Batsis, Fabio R Faucz, Prashant Chittiboina, Ivana Bjelobaba, Darwin O Larco, Martha Quezado, Adrian F Daly, Stanko S Stojilkovic, T John Wu, Albert Beckers, Maya B Lodish, and Constantine A Stratakis

Cushing’s disease (CD) in children is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. Germline or somatic mutations in genes such as MEN1, CDKIs, AIP, and USP8 have been identified in pediatric CD, but the genetic defects in a significant percentage of cases are still unknown. In this study, we investigated the orphan G-protein-coupled receptor GPR101, a gene known to be involved in somatotropinomas, for its possible involvement in corticotropinomas. We performed GPR101 sequencing, expression analyses by RT-qPCR and immunostaining, and functional studies (cell proliferation, pituitary hormone secretion, and cAMP measurement) in a series of patients with sporadic CD secondary to ACTH-secreting adenomas in whom we extracted DNA from peripheral blood and pituitary tumor samples (n=36). No increased GPR101 expression was observed in tumors compared with normal pituitary (NP) tissues, nor did we find a correlation between GPR101 and ACTH expression levels. Sequence analysis revealed a very rare germline heterozygous GPR101 variant (p.G31S) in one patient with CD. Overexpression of the p.G31S variant did not lead to increased growth and proliferation, although modest effects on cAMP signaling were observed. GPR101 is not overexpressed in ACTH-secreting tumors compared with NPs. In conclusion, rare germline GPR101 variant was found in one patient with CD, but in vitro studies did not support a consistent pathogenic effect. GPR101 is unlikely to be involved in the pathogenesis of CD.

Free access

Takako Araki, Ning-Ai Liu, Yukiko Tone, Daniel Cuevas-Ramos, Roy Heltsley, Masahide Tone, and Shlomo Melmed

Cushing’s syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing’s syndrome). Hypercortisolemic features of ectopic Cushing’s syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing’s syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC. We identify an E2F1 cluster binding to the proximal hPOMC promoter region (−42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing’s cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing’s syndrome.

Free access

Paraskevi Xekouki and Constantine A Stratakis

Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney–Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.

Free access

Anna Angelousi, Krystallenia I Alexandraki, George Kyriakopoulos, Marina Tsoli, Dimitrios Thomas, Gregory Kaltsas, and Ashley Grossman

Endocrine organs are metastatic targets for several primary cancers, either through direct extension from nearby tumour cells or dissemination via the venous, arterial and lymphatic routes. Although any endocrine tissue can be affected, most clinically relevant metastases involve the pituitary and adrenal glands with the commonest manifestations being diabetes insipidus and adrenal insufficiency respectively. The most common primary tumours metastasing to the adrenals include melanomas, breast and lung carcinomas, which may lead to adrenal insufficiency in the presence of bilateral adrenal involvement. Breast and lung cancers are the most common primaries metastasing to the pituitary, leading to pituitary dysfunction in approximately 30% of cases. The thyroid gland can be affected by renal, colorectal, lung and breast carcinomas, and melanomas, but has rarely been associated with thyroid dysfunction. Pancreatic metastasis can lead to exo-/endocrine insufficiency with renal carcinoma being the most common primary. Most parathyroid metastases originate from breast and lung carcinomas and melanoma. Breast and colorectal cancers are the most frequent ovarian metastases; prostate cancer commonly affects the testes. In the presence of endocrine deficiencies, glucocorticoid replacement for adrenal and pituitary involvement can be life saving. As most metastases to endocrine organs develop in the context of disseminated disease, surgical resection or other local therapies should only be considered to ameliorate symptoms and reduce tumour volume. Although few consensus statements can be made regarding the management of metastases to endocrine tissues because of the heterogeneity of the variable therapies, it is important that clinicians are aware of their presence in diagnosis.